Some Generalizations Of g^{**}-Open Sets in Topological Spaces

D. Saravanakumar Department of Mathematics SNS College of Engineering Coimbatore, Tamil Nadu, India. saravana_13kumar@yahoo.co.in K. M. Sathishkumar Department of Mathematics Kamaraj College of Engineering and Technology, Virudhunagar, Tamil Nadu, India. Sathish.infinity83@gmail.com

Abstract—In this paper, we generated a new type of open sets, namely g^{**} -open sets in topological spaces, used to constructed new types of separation axioms g^{**} - T_i spaces (i = 0, ½, 1, 2) and characterized g^{**} - T_i spaces using g^{**} -open and g^{**} -closed sets. Further we defined new generalized closed sets, namely g^{**} -closed and gg^{**} -closed sets and investigated some of their basic properties. *Keywords-g*^{**}-*open* (*closed*), g^{**} -*open* (*closed*), g^{**} -*open* (*closed*), g^{**} -*t*_i spaces (i = 0, ½, 1, 2.)

I. INTRODUCTION

The concept of generalized closed (g-closed) sets in a topological space was introduced by Levine [17] and concept of $T_{1/2}$ spaces and defined a new closure operator cl^{*} by using generalized closed sets. Levine [18] introduced the concept of semi open sets and semi continuity in a topological space. Bhattacharya et.al [6] introduced a new class of semi generalized open sets by means of semi open sets introduced by Levine [17]. Balachandran, et.al [5], introduced the concept of generalized continuous maps and generalized homeomorphism in a topological space. Sundaram et.al [24] defined the concept of semi generalized continuous maps and semi T_{1/2} spaces. Pushpalatha et.al [21] introduced the concept of g s-closed sets and g*s-continuous maps in a topological space. Sai Sundara Krishnnan et.al [22] introduced the concept of g**-closed sets and defined the new class of homeomorphism in a topological space. Saravanakumar et.al [23] defined the concept of $\alpha g^{\hat{}}$ closed sets, αg^{**} -continuous and αg^{**} -irresolute mappings and studied some their important properties. We begin with some basic concepts. A subset A of a topological space (X, τ) is called α -open [12] (resp. semi open [18]) if A \subseteq int(cl(int(A))) (resp. A \subseteq cl(int(A)). Also A is said to be α -closed (resp. semiclosed) if X - A is α -open (resp. semi-open). A subset A of a topological space (X, τ) is said to be g-closed [17] if cl(A) \subset U whenever $A \subset U$ and U is a open set in X. Its complement is called g-open. The collection of all α -open [12] (resp. semiopen [18], g-open [17]) subsets in (X, τ) is denoted by τ^{α} (resp. SO(X), GO(X)). The α -closure (resp. semi-closure, g-closure) of a subset A is smallest α -closed (resp. semi-closed, g-closed) set containing A and this is denoted by $\alpha cl(A)$ (resp. scl(A), gcl(A)). A subset A of a topological space (X, τ) is called g^{**} -open [22] if there exists an open set U such that U $\subseteq A \subseteq gcl(U)$. Its complement is called g^{**} -closed. The collection of all g^{**} -open sets is denoted by $G^{**}O(X)$. The g^{**}cl(A) [22] is defined as the smallest g^{**}-closed set containing A. A subset A of a topological space (X, τ) is called sg^{**}-closed [7] (resp αg^{**} -closed [23]) if scl(A) $\subseteq U$ (resp. $\alpha cl(A) \subseteq U$) whenever A $\subseteq U$ and U is a g^{**} -open set in (X, τ).

In this paper we introduce the concept of new types of separation axioms g^{**} -T_i spaces (i = 0, ¹/₂, 1, 2) and characterized g^{**} -T_i spaces using through the operator g^{**} -Cl and analysed g^{**} -T_i spaces using g^{**} -open and g^{**} -closed sets. Further we obtained the relationships between g^{**} -T_i spaces and studied some their basic properties. In addition, we generated g^{**} -closed sets and obtained new generalized closed set, namely generalized- g^{**} -closed (briefly gg^{**} -closed) sets and their important properties. Moreover, we obtained the relationships

between generalized closed sets such as closed, g^{**} -closed, g_{g}^{**} -closed, gg_{g}^{**} -closed sets. Throughout this paper, we denoted cl^{**} (or cl^{*}) by g-cl and we represented the topological space (X, τ) as X. Unless otherwise no separation axiom mentioned.

II. G^{**}-SEPARATION AXIOMS

Definition 2.1. A topological space X is called a g^{**} -T₀ space if for each pair of distinct points x, $y \in X$, there exists a g^{**} -open set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Definition 2.2. A topological space X is called a g^{**} -T₁ space if for each pair of distinct points x, $y \in X$, there exists a g^{**} -open sets U and V contain x and y respectively such that $y \notin U$ and $x \notin V$.

Definition 2.3. A topological space X is called a g^{**} -T₂ space if for each pair of distinct points x, $y \in X$, there exists g^{**} -open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.

Definition 2.4. Let X be a topological space and A be a subset of X. Then A is called a g^{**} -generalized closed (briefly g^{**}_{**} g-closed) set if g^{**} cl(A) \subseteq U whenever A \subseteq U and U is a g^{*} -open set in X.

Example 2.1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then the collection of $g^{**}g$ -closed sets is $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{c\}, \{a, c\}, \{b, c\}\}$.

Remark 2.1. Union of two $g^{**}g$ -closed sets need not be $g^{**}g$ -closed.

From Example 2.1, Take $A = \{a\}$ and $B = \{b\}$. Then A and B are $g^{**}g$ -closed sets but $A \cup B = \{a, b\}$ is not $g^{**}g$ -closed.

Remark 2.2. Intersection of two $g^{**}g$ -closed sets need not be $g^{**}g$ -closed.

If $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$, then the collection of $g^{**}g$ -closed sets is $\{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$. Take $A = \{b, c\}$ and $B = \{b, d\}$, but $A \cap B = \{b\}$ is not $g^{**}g$ -closed.

Theorem 2.1. Let X be a topological space. If A is a g^{**} -closed set in X, then A is g^{**} -closed.

Proof. Let A be a g^{**} -closed set in X and let U be a g^{**} -open set in X such that A \subseteq U. Then by Remark 3.18[22], we have that A = g^{**} cl(A). This implies that g^{**} cl(A) \subseteq U and by Definition 2.4, A is g^{**} g-closed.

Remark 2.3. Any g^{**}g-closed set need not be g^{**}-closed.

From Remark 2.2, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, d\}$, $\{a, c, d\}$ are all g^{**} closed sets but not g^{**} -closed.

Definition 2.5. A topological space X is called a g^{**} -T_{1/2} space if each g^{**} g-closed set of X is g^{**} -closed.

Theorem 2.2. Let X be a topological space. Then for a point $x \in X$, $x \in g^{**}cl(A)$ if and only if $V \cap A \neq \emptyset$ for any $V \in G^{**}O(X)$ such that $x \in V$.

Proof. Let F_0 be the set of all $y \in X$ such that $V \cap A \neq \emptyset$ for any $V \in G^{**}O(X)$ and $y \in V$. Now, we prove that $g^{**}cl(A) =$ F_0 . Let us assume $x \in g^{**}cl(A)$ and $x \notin F_0$. Then there exists a g^{**} -open set U of x such that $U \cap A = \emptyset$. This implies that A $\subseteq X - U$. Therefore $g^{**}cl(A) \subseteq X - U$. Hence $x \notin g^{**}cl(A)$. This is a contradiction. Hence $g^{**}cl(A) \subseteq F_0$. Conversely, let F be a set such that $A \subseteq F$ and $X - F \in G^{**}O(X)$. Let $x \notin F$. Then we have that $x \in X - F$ and $(X - F) \cap A = \emptyset$. This implies that $x \notin F_0$. Therefore $F_0 \subseteq F$. Hence $F_0 \subseteq g^{**}cl(A)$.

Theorem 2.3. Let X be a topological space and A be a subset of X. Then A is g^{**} -closed if and only if g^{**} cl({x}) $\cap A \neq \emptyset$ holds for every $x \in g^{**}$ cl(A).

Proof. Let U be any g^{**} -open set in X such that $A \subseteq U$. Let $x \in g^{**}cl(A)$. By assumption there exists a point $z \in g^{**}cl(\{x\})$ and $z \in A \subseteq U$. Therefore from Theorem 5.1, we have that $U \cap \{x\} \neq \emptyset$. This implies that $x \in U$. Hence A is a $g^{**}g$ -closed set in X. Conversely, suppose there exists a point $x \in g^{**}cl(A)$ such that $g^{**}cl(\{x\}) \cap A = \emptyset$. Since $g^{**}cl(\{x\})$ is a g^{**} -closed set implies that $X - g^{**}cl(\{x\})$ is a g^{**} -closed set $X - g^{**}cl(\{x\})$ and A is $g^{**}g$ -closed set, implies that $g^{**}cl(\{x\})$. Hence $x \notin g^{**}cl(A)$. This is a contradiction.

Theorem 2.4. Let X be a topological space and A be the $g^{**}g$ -closed set in X. Then $g^{**}cl(A) - A$ does not contain a non empty g^{**} -closed set.

Proof. Suppose there exists a non empty g^{**} -closed set F such that $F \subseteq g^{**}cl(A) - A$. Let $x \in F$. Then $x \in g^{**}cl(A)$, implies that $F \cap A = g^{**}cl(A) \cap A \supseteq g^{**}cl(\{x\}) \cap A \neq \emptyset$ and hence $F \cap A \neq \emptyset$. This is a contradiction.

Theorem 2.5. Let X be a topological space. Then for each $x \in X$, $\{x\}$ is g^{**} -closed or $X - \{x\}$ is g^{**} g-closed.

Proof. Suppose that $\{x\}$ is not g^{**} -closed. Then $X - \{x\}$ is not g^{**} -open. This implies that X is the only g^{**} -open set containing $X - \{x\}$ and hence $X - \{x\}$ is g^{**} g-closed.

Theorem 2.6. A topological space X is a g^{**} -T_{1/2} space if and only if for each $x \in X$, {x} is g^{**} -open or g^{**} -closed.

Proof. Suppose that $\{x\}$ is not g^{**} -closed. Then it follows from the assumption and Theorem 2.5, $\{x\}$ is g^{**} -open. Conversely,

let F be a $g^{**}g$ -closed set in X. Let $x \in g^{**}cl(F)$. Then by the assumption $\{x\}$ is either g^{**} -open or g^{**} -closed.

Case (i): Suppose that {x} is g^{**} -open. Then by Theorem 2.2, {x} $\cap F \neq \emptyset$. This implies that $g^{**}cl(F) = F$. Therefore X is a g^{**} -T_{1/2} space.

Case (ii): Suppose that {x} is g^{**} -closed. Let us assume $x \notin F$. Then $x \in g^{**}cl(F) - F$. This is a contradiction. Hence $x \in F$. Therefore X is a g^{**} -T_{1/2} space.

Theorem 2.7. A space X is g^{**} -T₁ if and only if for any $x \in X$, $\{x\}$ is g^{**} -closed.

Proof. Follows from Definitions 3.16[22] and 2.2.

Remark 2.4. (i) Every $g^{**}-T_{1/2}$ space is $g^{**}-T_0$, but converse need not be true.

Let $X=\{a,b,c,d\}$ and $\tau=\{\varnothing,X,\{a\},\{a,b\},\{a,b,d\}\}$. Then X is a $g^{**}\text{-}T_0$ space. Also $\{a,c,d\}$ is a $g^{**}\text{g-closed}$ set but not $g^{**}\text{-}\text{closed}$. Hence X is not $g^{**}\text{-}T_{1/2}$.

(ii) Every g^{**} -T₁ space is g^{**} -T_{1/2}, but converse need not be true.

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$. Then X is a g^{**} -T_{1/2} space but not g^{**} -T₁.

(iii) Every g^{**} -T₂ space is g^{**} -T₁, but converse need not be true.

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then X is a g^{**} -T₁ space but not g^{**} -T₂.

Remark 2.5. From Definitions 2.1, 2.2, 2.3, 2.5, Theorems 2.5, 2.6, 2.7, Remark 3.4[22], 2.4, we have the following relationship diagram

$$g^{**}-T_2 \xrightarrow{g^{**}-T_1} \xrightarrow{g^{**}-T_{1/2}} \xrightarrow{g^{**}-T_0} g^{**}-T_0$$

where $A \rightarrow B$ represent A implies B, $A \nleftrightarrow B$ represent A does not imply B.

Definition 2.6. Let A be subset of a topological space X. Then g^{**} -interior of A is defined as union of all g^{**} -open sets contained in A.

Thus g^{**} int(A) = $\cup \{U : U \in G^{**}O(X) \text{ and } U \subseteq A\}.$

Theorem 2.8. Let $\{A_{\alpha} : \alpha \in J\}$ be the collection of g^{**}_{**} -open sets in a topological space X. Then $\cup_{\alpha \in J} A_{\alpha}$ is also a g^{**} -open set in X.

Proof. Since A_{α} is g^{**} -open, then by Theorem 3.3[22], we have that $A_{\alpha} \subseteq g\text{-cl}(\text{int}(A_{\alpha}))$. This implies that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq \bigcup_{\alpha \in J} (g\text{-cl}(\text{int}(A_{\alpha}))) \subseteq g\text{-cl}(\text{int}(\bigcup_{\alpha \in J} A_{\alpha}))$. Hence $\bigcup_{\alpha \in J} A_{\alpha}$ is a g^{**} -open set in X.

Theorem 2.9. Let X be a topological space. A subset A of X is g^{**} -closed in X if and only if g-int(cl(A)) \subseteq A.

Proof. If A is a g^{**} -closed in X, then X – A is g^{**} -open. By Theorem 3.3[22], we have that X – A \subseteq g-cl(int(X – A)). This implies that X – A \subseteq g-cl(int(X – A)) = g-cl(X – cl(A)) =

X - g-int(cl(A)) and hence $g\text{-int}(cl(A)) \subseteq A$. Conversely, let $g\text{-int}(cl(A)) \subseteq A$. Then $X - A \subseteq X - g\text{-int}(cl(A)) =$ g-cl(X - cl(A)) = g-cl(int(X - A)) and hence $X - A \subseteq g\text{-}$ cl(int(X - A)). Then by Theorem 3.3[22], we have that X - A is g^{**} -open. Therefore A is g^{**} -closed.

Theorem 2.10. Let $\{A_{\alpha} : \alpha \in J\}$ be the collection of g^{**}_{**} -closed sets in a topological space X. Then $\bigcap_{\alpha \in J} A_{\alpha}$ is also a g^{**} -closed set in X.

Proof. Follows from Theorem 2.8 and 2.9.

Theorem 2.11. Let A be a subset of a topological space X. Then

(i) g^{**} int(A) is a g^{**} -open set contained in A; (ii) g^{**} cl(A) is a g^{**} -closed set containing A; (iii) A is g^{**} -closed if and only if g^{**} cl(A) = A; (iv) A is g^{**} -open if and only if g^{**} int(A) = A; (v) g^{**} int(A) = X - g^{**} cl(X - A); (vi) g^{**} cl(A) = X - g^{**} int(X - A).

Proof. Follows from Definitions 3.17[22], 2.6, Theorem 2, 8, 2.9 and 2.10.

Theorem 2.12. Let X be a topological space. If A and B are two subsets of X, then the following are hold: (i) If $A \subseteq B$, then $g^{**}int(A) \subseteq g^{**}int(B)$; (ii) $g^{**}int(A \cup B) = g^{**}int(A) \cup g^{**}int(B)$; (iii) $g^{**}int(A \cap B) \subseteq g^{**}int(A) \cap g^{**}int(B)$.

Proof. Follows from Definition 2.6, Theorem 2.8 and Remark 3.16[22].

Definition 2.7. A subset A of a topological space X is said to be a g^{**} -generalized open (briefly g^{**} g-open) set if X – A is a g^{**} g-closed set in X.

Example 2.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then the collection of $g^{**}g$ -open sets is $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

Theorem 2.13. A subset A of a topological space X is g^{**} g-open if and only if $V \subseteq g^{**}$ int(A) whenever $V \subseteq A$ and V is g^{**} -closed in X.

Proof. Let A be a g^{**} g-open set in X and let V be a g^{**} -closed in X such that $V \subseteq A$. Then $X - A \subseteq X - V$ and X - V is g^{**} -open. Since A is g^{**} g-open, X – A is g^{**} g-closed. This implies that $g^{**}cl(X - A) \subseteq X - V$. Also by Theorem 2.11(vi), we have that X – $g^{**}int(A) = g^{**}cl(X - A) \subseteq X - V$. Therefore $V \subseteq g^{**}int(A)$. Conversely, let A = X - B and let U be g^{**} -open such that $B \subseteq U$. This implies that $X - U \subseteq X - B$ and X - U is g^{**} -closed. Then by hypothesis, $X - U \subseteq g^{**}int(X - B)$. Also by Theorem 2.11(v), $X - U \subseteq X - g^{**}cl(B)$. Therefore $g^{**}cl(B) \subseteq$ U. Thus B is g^{**} g-closed and hence X - B = A is g^{**} g-open.

Definition 2.8. Let X be a topological space. Then a subset A of X is said to be generalized- g^{**} -open (briefly gg^{**} -open) if $F \subseteq g^{**}int(A)$ whenever $F \subseteq A$ and if F is closed in X. A subset A of X is said to be generalized- g^{**} -closed (briefly gg^{**} -closed) if X – A is gg^{**} -open.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then (i) the collection of gg ^{**}-open sets is $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$.

(ii) Also the collection of gg^{**} -closed sets is { \emptyset , X, {a}, {c}, {d}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Theorem 2.14. A subset A of a topological space X is gg^{**} -closed if and only if $g^{**}cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Proof. Let A be a gg^{**}-closed set in X and let U be open in X such that A \subseteq U. Then X – U \subseteq X – A and X – U is closed. Since A is gg^{**}-closed, X – A is gg^{**}-open. This implies that X – U \subseteq g^{**}int(X – A). Also by Theorem 2.11(v), we have that X – U \subseteq X – g^{**}cl(A). Therefore g^{**}cl(A) \subseteq U. Conversely, let A = X – B and let F be closed such that F \subseteq B. This implies that X – B \subseteq X – F and X – F is open. Then by hypothesis, g^{**}cl(X – B) \subseteq X – F. Also by Theorem 2.11(vi), X – g^{**}int(B) = g^{**}cl(X – B) \subseteq X – F. Therefore F \subseteq g^{**}int(B). Thus B is gg^{**}-open and hence X – B = A is gg^{**}-closed.

Remark 2.6. Union of two gg^{**} -closed sets need not be gg^{**} -closed.

From Example 2.1, Take $A = \{a\}$ and $B = \{b\}$. Then A and B are gg^{**} -closed sets but $A \cup B = \{a, b\}$ is not gg^{**} -closed.

Remark 2.7. Intersection of two gg^{**} -closed sets need not be gg^{**} -closed.

If $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$, then the collection of gg^{**} -closed sets is $\{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Take $A = \{b, c\}$ and $B = \{b, d\}$, but $A \cap B = \{b\}$ is not gg^{**} -closed.

Theorem 2.15. Let A be a subset of a topological space X. (i) If A is a closed set of X, then A is g^{**} -closed in X; (ii) If A is a g^{**} -closed set of X, then A is g^{**} -closed in X; (iii) If A is a g^{**} -closed set of X, then A is g^{**} -closed in X;

Proof. (i) Let A be a closed set in X. Then cl(A) = A. Since g-int(cl(A)) \subseteq cl(A), implies that g-int(cl(A)) \subseteq cl(A) = A and hence g-int(cl(A)) \subseteq A. Then by Theorem 2.9, we have that A is g^{**}-closed.

(ii) Let A be a g^{**} -closed set in X and U be a g^{**} -open set in X such that $A \subseteq U$. Since A is g^{**} -closed and by Theorem 2.11(iii), g^{**} cl(A) = A \subseteq U. Therefore g^{**} cl(A) \subseteq U and hence A is g^{**} g-closed.

(iii) Let A be a $g^{**}g$ -closed set in X and U be a open set in X such that $A \subseteq U$. Then by Remark 3.4[22], we have that U is g^{**} -open. Since A is $g^{**}g$ -closed and by Definition 2.4, $g^{**}cl(A) \subseteq U$ and hence A is gg^{**} -closed.

Remark 2.8. Every g^{**} g-closed set of X is gg^{**} -closed, but converse need not be true.

From Theorem 2.15, we have that every $g^{**}g$ -closed set of X is gg^{**} -closed.

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then (i) the collection of g^{**g} -closed sets is $\{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$.

(ii) Also the collection of gg^{**} -closed sets is { \emptyset , X, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, b, d}, {a, c, d}}.

Thus $\{a, b, d\}$ is a gg^{**} -closed set but not $g^{**}g$ -closed.

Theorem 2.16. If A is both open and gg^{**} -closed set in X, then A is g^{**} -closed.

Proof. Since A is open and gg^{**} -closed, g^{**} cl(A) \subseteq A and hence g^{**} cl(A) = A. This implies that A is g^{**} -closed.

Theorem 2.17. If A is a gg^{**} -closed subset of X, then $g^{**}cl(A) - A$ does not contain any nonempty closed set.

Proof. Let F be a closed subset of $g^{**}cl(A) - A$. Then $A \subseteq X - F$. Since A is gg^{**} -closed and X - F is open, implies that $g^{**}cl(A) \subseteq X - F$. Therefore $F \subseteq (X - g^{**}cl(A)) \cap g^{**}cl(A) = \emptyset$.

Theorem 2.18. Let $x \in X$. Then $\{x\}$ is closed or $X - \{x\}$ is gg^{**}-closed in X.

Proof. Suppose $\{x\}$ is closed nothing to prove. Suppose $\{x\}$ is not closed. Then $X - \{x\}$ is not a open set. Therefore X is the only open set containing $X - \{x\}$. Hence $g^{**}cl(X - \{x\}) \subseteq X$. This implies that $X - \{x\}$ is gg^{**} -closed.

Theorem 2.19. Let X be a topological space. Then the following conditions are equivalent: (i) every gg^{**} -closed set of X is g^{**-} closed;

(ii) for each $x \in X$, singleton $\{x\}$ is closed or g^{**} -open in X; (iii) for each $x \in X$, singleton $\{x\}$ is closed or open in X; (iv) X is a $T_{1/2}$ space.

Proof. (i) \Rightarrow (ii). Let $x \in X$. Suppose $\{x\}$ is closed nothing to prove. Suppose $\{x\}$ is not closed. By Theorem 2.18, $X - \{x\}$ is a gg^{**}-closed set. Therefore by assumption $X - \{x\}$ is g^{**}-closed. Hence $\{x\}$ is g^{**}-open.

(ii) \Rightarrow (iii) Suppose {x} is closed nothing to prove. Suppose {x} is not closed. Then {x} is g^{**} -open, implies that {x} \subseteq g-cl(int{x}). Obvious int{x} = {x} otherwise {x} is not g^{**} -open and hence {x} is open.

(iii) \Rightarrow (iv). Obviously.

(iv) \Rightarrow (i). Let A be a gg^{**}-closed set. Now to prove that A is a g^{**}-closed set in X, that is to prove that g^{**}cl(A) \subseteq A. Let x \in g^{**}cl(A). By assumption {x} is open or closed.

Case (i): Suppose that $\{x\}$ is open. Then $\{x\}$ is g^{**} -open. By using Theorem 2.2, $\{x\} \cap A \neq \emptyset$, this implies that $x \in A$.

Case (ii): Suppose that $\{x\}$ is closed. It follows from Theorem 2.17 that $g^{**}cl(A) - A$ does not contain $\{x\}$. This implies that $x \in A$.

Hence $g^{**}cl(A) \subseteq A$. Therefore A is g^{**} -closed in X.

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., vol. 12, pp. 77–90, 1983.
- [2] D. Andrijevic, Semi-preopen sets, Math. Vesnik, vol. 38, No. 1, pp. 24– 32.
- [3] I. Arokiarani, K. Balachandran and J. Dontchev, Some charaterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser.A. Math., vol. 20, pp. 93–104, 1999.
- [4] S. P. Arya and T. Nour, Characterization of s-normal spaces, Indian J. Pure. Appl. Math., vol. 21, No. 8, pp. 717–719, 1990.
- [5] K. Balacandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser.A, Math., vol. 12, pp. 5–13, 1991.
- [6] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in a topology, Indian J. Math., vol. 29, No. 3, pp. 375–382
- [7] J. Chitra and D. Saravanakumar, On a class of new generalized closed sets in topological spaces, Proc. of HICAMS, (2012), pp. 121–128.
- [8] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., vol. 74, pp. 233–254, 1972.
- [9] R. Devi, K. Balachandran and H. Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math., vol. 29, No. 1, pp. 37–49, 1988.
- [10] R. Devi, K. Balachandran and H. Maki, Semi-generalized closed maps and generalized semi closed maps, Mem. Fac. Sci. Kochi. Univ. SerA. Math., vol. 14, pp. 41–54, 1993.
- [11] R. Devi, H. Maki and K. Balachandran, Semi generalized homeomorphisms, generalized homeomorphism in topological spaces, Indian J. Pure. Appl.Math., vol. 26, No. 3, pp. 271–284.
- [12] J. Donchev, On some separation axioms associated with the α -topology, MEm. Fac. Sci. Kochi Univ. Ser.A. Math., vol. 116, pp. 31–35.
- [13] W. Dunham, $T_{1/2}$ -spaces, Kyunpook Math. J., vol. 17, pp. 161–169, 1977.
- [14] W. Dunham, A new closure operator for non T₁ topologies, Kyungpook Math. J., vol. 22, pp. 55–60, 1982.
- [15] W. Dunham and N. Levine, Further results on generalized closed sets in topology, Kyunpook Math. J., vol. 20, pp. 169–175.
- [16] Y. Ganambal, On generalized preregular clsoed sets in topolgoical spaces, Indian J. Pure. Appl. Math., vol. 216, No. 3, pp. 351–360.
- [17] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, vol. 19, No. 2, pp. 89–96.
- [18] N. Levine, Semi-open sets and semi-continuity in topoogical spaces, Amer. Math. Monthly, vol. 70, pp. 36–41, 1963.
- [19] O. Njastad, On some classes of nearly open sets, Pacif. J. Math., vol. 15, pp. 961–970, 1965.
- [20] N. Palaniappan and K. C.Rao, Regular generalized closed sets, Kyungpook Math. J., vol. 33, No. 2, pp. 211–219, 1993.
- [21] A. Pushpalatha and K. Anitha, g*s-closed in topological spaces, Int. J. Contemo. Math. Sciences, vol. 6, No. 19, pp. 917–929.
- [22] G. Sai Sundara Krishnan and K. Balachandran, A new type of homeomorphism in a topological space, Bull. Cal. Math. Soc., vol. 97, No. 1, pp. 69–78, 2005.
- [23] D. Saravanakumar and M. K. Sathishkumar, On a class of ag^{**}-closed sets in topological spaces and some mappings.
- [24] P. Sundaram, H, Maki and K. Balachandran, Semi-generalized continuous maps and semi $T_{1/2}$ spaces, Bull. Fukoka Univ. Ed. Part III, vo. 40, pp. 33-40, 1991.