On Right Orthodox Γ-Semigroup

S. Chattopadhyay

Sri Ramkrishna Sarada Vidyamahapitha

Kamarpukur, Hooghly -712612, West Bengal, INDIA.

e-mail: chatterjees04@yahoo.co.in

Abstract

Let $S = \{a, b, c, \ldots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \ldots\}$ be two nonempty sets. S is called a Γ -semigroup if $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. An element $e \in S$ is said to be α -idempotent for some $\alpha \in \Gamma$ if $e\alpha e = e$. A Γ - semigroup S is called regular Γ -semigroup if each element of S is regular i.e, for each $a \in S$ there exists an element $x \in S$ and there exist $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$. A regular Γ -semigroup S is called a right orthodox Γ -semigroup if for any α -idempotent e and e-idempotent e of e-idempotent. In this paper we introduce ip - congruence on regular Γ -semigroup and ip - congruence pair on right orthodox Γ -semigroup and investigate some results relating this pair.

AMS Mathematics Subject Classification (2010): 20M17.

Keywords: Γ-Semigroup, right orthodox Γ-Semigroup, left partial congruence, ip - congruence, normal subsemigroup, ip - congruence pair.

1 Introduction

Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. S is called a Γ -semigroup if

(i) $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and

(ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

A semigroup can be considered to be a Γ -semigroup in the following sense. Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. Let us extend the binary operation defined on S to $S \cup \{1\}$ by defining 11 = 1 and 1a = a1 for all $a \in S$. It can be shown that $S \cup \{1\}$ is a semigroup with identity element 1. Let $\Gamma = \{1\}$. If we take ab = a1b, it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$.

In [1] we introduced right orthodox Γ -semigroup. In [2] Gomes introduced the notion of congruence pair on orthodox semigroup and studied some of its properties. In this paper we introduce the notion of ip - congruence on regular Γ -semigroup, ip - congruence pair on right orthodox Γ -semigroup and studied some of its properties. We now recall some definition and results.

Definition 1.1 Let S be a Γ-semigroup. An element $a \in S$ is said to be regular if $a \in a\Gamma S\Gamma a$ where $a\Gamma S\Gamma a = \{a\alpha b\beta a : b \in S, \alpha, \beta \in \Gamma\}$. S is said to be regular if every element of S is regular.

Example 1.2 [6] Let M be the set of all 3×2 matrices and Γ be the set of all 2×3 matrices over a field. Then M is a regular Γ semigroup.

Example 1.3 Let S be a set of all negative rational numbers. Obviously S is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime }\}$. Let $a, b, c \in S$ and $\alpha \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a, α, b , then $a\alpha b \in S$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence S is a Γ -semigroup. Let $a = \frac{m}{n} \in S$ where m > 0 and n < 0. Suppose $m = p_1 p_2 \dots p_k$ where p_i 's are prime. Now $\frac{p_1 p_2 \dots p_k}{n} (-\frac{1}{p_1}) \frac{n}{p_2 \dots p_{k-1}} (-\frac{1}{p_k}) \frac{m}{n} = \frac{p_1 p_2 \dots p_k}{n}$. Thus taking $b = \frac{n}{p_2 \dots p_{k-1}}$, $\alpha = (-\frac{1}{p_1})$ and $\beta = (-\frac{1}{p_k})$ we can say that a is regular. Hence S is a regular Γ -semigroup.

Definition 1.4 Let S be a Γ-semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α -idempotent if $e\alpha e = e$. The set of all α -idempotents is denoted by E_{α} . We denote $\bigcup_{\alpha \in \Gamma} E_{\alpha}$ by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.5 Let S be a Γ-semigroup and $a, b \in S$, $\alpha, \beta \in \Gamma$. b is said to be an (α, β) inverse of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. This is denoted by $b \in V_{\alpha}^{\beta}(a)$.

Definition 1.6 Let S be a Γ-semigroup. An equivalence relation ρ on S is said to be a right (left) congruence on S if $(a,b) \in \rho$ implies $(a\alpha c,b\alpha c) \in \rho$, $((c\alpha a,c\alpha b) \in \rho)$ for all $a,b,c \in S$ IJLSM | December 2014, Available @ http://www.ijlsm.org

and for all $\alpha \in \Gamma$. An equivalence relation which is both left and right congruence on S is called *congruence* on S.

Theorem 1.7 Let S be a regular Γ-semigroup and $a \in S$. Then $V_{\alpha}^{\beta}(a)$ is non-empty for some $\alpha, \beta \in \Gamma$.

Proof: Since S is regular there exist $b \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha b\beta a$. We consider the element $b\beta a\alpha b$. Now $a\alpha(b\beta a\alpha b)\beta a = (a\alpha b\beta a)\alpha b\beta a = a\alpha b\beta a = a$ and $(b\beta a\alpha b)\beta a\alpha(b\beta a\alpha b) = b\beta(a\alpha b)\beta a)\alpha b\beta a\alpha b = b\beta a\alpha b\beta a\alpha b = b\beta a\alpha b$. Hence $b\beta a\alpha b \in V_{\alpha}^{\beta}(a)$.

Definition 1.8 [1] A regular Γ-semigroup S is called a right orthodox Γ-semigroup if for any α -idempotent e and β -idempotent f of S, $e\alpha f$ is a β -idempotent.

Example 1.9 [1] Let $A = \{1,2,3\}$ and $B = \{4,5\}$. S denotes the set of all mappings from A to B. Here members of S will be described by the images of the elements 1, 2, 3. For example the map $1 \to 4, 2 \to 5, 3 \to 4$ will be written as (4,5,4) and (5,5,4) denotes the map $1 \to 5, 2 \to 5, 3 \to 4$. A map from B to A will be described in the same fashion. For example (1,2) denotes $4 \to 1, 5 \to 2$. Now $S = \{(4,4,4),(4,4,5),(4,5,4),(4,5,5),(5,5,5),(5,4,5),(5,4,4),(5,5,4)\}$ and let $\Gamma = \{(1,1),(1,2),(2,3),(3,1)\}$. Let $f,g \in S$ and $\alpha \in \Gamma$. We define $f \alpha g$ by $(f \alpha g)(a) = f \alpha (g(a))$ for all $a \in A$. So $f \alpha g$ is a mapping from A to B and hence $f \alpha g \in S$ and we can show that $(f \alpha g)\beta h = f \alpha (g\beta h)$ for all $f,g,h \in S$ and $\alpha,\beta \in \Gamma$. We can show that each element x of S is an α -idempotent for an $\alpha \in \Gamma$ and hence each element is regular. Thus S is a regular Γ -semigroup. Moreover we can show that it is a right orthodox Γ -semigroup.

Definition 1.10 [1] A regular Γ-semigroup M is a right orthodox Γ-semigroup if and only if for $a, b \in S$, $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma$, $a' \in V_{\alpha_1}^{\alpha_2}(a)$ and $b' \in V_{\beta_1}^{\beta_2}(b)$, we have $b'\beta_2 a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1 b)$.

Theorem 1.11 Let S be a regular Γ-semigroup and E_{α} be the set of all α -idempotents in S. Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Then

$$RS(e,f) = \left\{g \in V^{\alpha}_{\beta}(e\alpha f) \cap E_{\alpha} : g\alpha e = f\beta g = g\right\}$$

is non-empty.

Proof: Since S is regular, there exist $b \in S$ and $\gamma, \delta \in \Gamma$ such that $e\alpha f\gamma b\delta e\alpha f = e\alpha f$ and $b\delta e\alpha f\gamma b = b$. Now $(e\alpha f)\beta(f\gamma b\delta e)\alpha(e\alpha f) = e\alpha f\gamma b\delta e\alpha f = e\alpha f$ and $(f\gamma b\delta e)\alpha(e\alpha f)\beta(f\gamma b\delta e) = f\gamma b\delta e\alpha f\gamma b\delta e = f\gamma b\delta e$. Hence $f\gamma b\delta e \in V_{\beta}^{\alpha}(e\alpha f)$. Thus $V_{\beta}^{\alpha}(e\alpha f) \neq \phi$. Now let $x \in V_{\beta}^{\alpha}(e\alpha f)$ and setting $g = f\beta x\alpha e$ we have $g\alpha g = (f\beta x\alpha e)\alpha(f\beta x\alpha e) = f\beta(x\alpha e)\alpha f\beta x)\alpha e = f\beta x\alpha e = g$. Thus $g \in E_{\alpha}$.

Again $g\alpha e\alpha f\beta g=f\beta x\alpha e\alpha e\alpha f\beta f\beta x\alpha e=f\beta x\alpha e\alpha f\beta x\alpha e=f\beta x\alpha e=g$ and $e\alpha f\beta g\alpha e\alpha f=e\alpha f\beta f\beta x\alpha e\alpha e\alpha f=e\alpha f\beta x\alpha e\alpha f=e\alpha f$ implies that $g\in V^\alpha_\beta(e\alpha f)$. Hence $g\alpha e=f\beta x\alpha e\alpha e=f\beta x\alpha e\alpha e=f\beta x\alpha e=g$ and $f\beta g=f\beta f\beta x\alpha e=f\beta x\alpha e=g$. Therefore $RS(e,f)\neq\emptyset$.

Definition 1.12 Let S be a regular Γ- semigroup and e and f be α and β -idempotents respectively. Then the set RS(e, f) described in the above theorem is called the right sandwich set of e and f.

Theorem 1.13 Let S be a regular Γ-semigroup and e and f be α and β-idempotents respectively. Then the set $RS(e, f) = \{g \in V_{\beta}^{\alpha}(e\alpha f) : g\alpha e = g = f\beta g \text{ and } e\alpha g\alpha f = e\alpha f\}.$

Proof: Let $P = \{g \in V_{\beta}^{\alpha}(e\alpha f) : g\alpha e = g = f\beta g \text{ and } e\alpha g\alpha f = e\alpha f\}$ and let $g \in RS(e, f)$. Then $g \in E_{\alpha}, g\alpha e = g = f\beta g$ and $g \in V_{\beta}^{\alpha}(e\alpha f)$. Now $e\alpha g\alpha f = e\alpha g\alpha e\alpha f\beta g\alpha f = e\alpha f\beta g\alpha e\alpha f\beta g\alpha e\alpha f = e\alpha f\beta g\alpha e\alpha f = e\alpha f$. Hence $RS(e, f) \subseteq P$. Next let $g \in P$. Now $g\alpha g = g\alpha e\alpha f\beta g = g$. Hence $g \in E_{\alpha}$, which shows that $P \subseteq RS(e, f)$ and hence the proof.

Theorem 1.14 Let S be a regular Γ- semigroup and $a, b \in S$. If $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$ and $g \in RS(a'\beta a, b\gamma b')$ then $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$.

Proof: Let $e = a'\beta a$ and $f = b\gamma b'$. Then e be an α -idempotent and f is a δ -idempotent and also g is an α -idempotent. Now $(a\alpha b)\gamma(b'\delta g\alpha a')\beta(a\alpha b) = a\alpha f\delta g\alpha e\alpha b = a\alpha g\alpha b = a\alpha a'\beta a\alpha g\alpha b\gamma b'\delta b = a\alpha e\alpha g\alpha e\alpha b = a\alpha e\alpha f\delta b = a\alpha a'\beta a\alpha b\gamma b'\delta b = a\alpha b$. Again $(b'\delta g\alpha a')\beta(a\alpha b)\gamma(b'\delta g\alpha a') = b'\delta g\alpha e\alpha f\delta g\alpha a' = b'\delta g\alpha g\alpha a' = b'\delta g\alpha a'$. Hence $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$.

Corollary 1.15 For $a, b \in S$, if $V_{\alpha}^{\beta}(a)$ and $V_{\gamma}^{\delta}(b)$ are nonempty then $V_{\gamma}^{\beta}(a\alpha b)$ is nonempty.

Proof: Let $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$ then we know that $RS(a'\beta a, b\gamma b') \neq \phi$. For $g \in RS(a'\beta a, b\gamma b')$ and hence we get $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$. Hence the proof.

Throughout our discussion we consider S as a regular Γ -semigroup.

2 Ip - congruence pair on right orthodox Γ-semigroup

In this section we characterize some congruence on a right orthodox Γ -semigroup.

Definition 2.1 Let S be a Γ-semigroup. A nonempty subset K of S is said to be partial Γ-subsemigroup if for $a, b \in K$, $a\alpha b \in K$, whenever $V_{\alpha}^{\beta}(a) \neq \phi$. for some $\alpha, \beta \in \Gamma$.

Definition 2.2 A partial Γ-subsemigroup K of S is said to be regular if $V_{\alpha}^{\beta}(k) \subseteq K$ for all $k \in K$ and $\alpha, \beta \in \Gamma$.

Definition 2.3 A partial Γ-subsemigroup K is said to be full if $E(S) \subseteq K$ where E(S) is the set of all idempotent elements of S.

Definition 2.4 A partial Γ-subsemigroup K of S is said to be self conjugate if for all $a \in S, k \in K$ and $a' \in V_{\alpha}^{\beta}(a), a'\beta k\gamma a \in K$ whenever $V_{\gamma}^{\delta}(k) \neq \phi$ for some $\gamma, \delta \in \Gamma$.

Definition 2.5 A partial Γ-subsemigroup K of S is said to be normal if it is regular, full and self conjugate.

Definition 2.6 An equivalence relation ρ on S is said to be left partial congruence if $(a, b) \in \rho$ implies $(c\alpha_3 a, c\alpha_3 b) \in \rho$ whenever $V_{\alpha_3}^{\beta_3}(c)$ is nonempty. Note that every left congruence is a left partial congruence.

Here we consider these left partial congruence which satisfy the following condition: $(a,b) \in \rho$ implies $(a\alpha_1c,b\alpha_2c) \in \rho$ whenever each of the sets $V_{\alpha_1}^{\beta_1}(a), V_{\alpha_2}^{\beta_2}(b)$ is nonempty for $\alpha_i, \beta_i \in \Gamma, i = 1, 2$. We call this left partial congruence as inverse related partial congruence (ip - congruence).

Example 2.7 Let us consider the example given in Example 1.9. We now give a partition $S = \bigcup_{1 \le i \le 5} S_i$ and let ρ be the equivalence relation yielded by the partition where each S_i is given by:

$$S_1 = \{(4, 4, 4)\},\$$

$$S_2 = \{(5, 5, 5)\},\$$

$$S_3 = \{(4, 5, 4), (5, 4, 5)\},\$$

$$S_4 = \{(4, 5, 5), (5, 4, 4)\},\$$

$$S_5 = \{(4, 4, 5), (5, 5, 4)\}.$$

Here we see that $(4,5,4)\rho(5,4,5)$ but (4,5,4)(3,1)(4,4,4)=(4,4,4) and (5,4,5)(3,1)(4,4,4)=(5,5,5) i.e ρ is not a congruence.

Now for $f \in S$ we observe the following cases:

- (a) $(4, 4, 4)\alpha f = (4, 4, 4)$ for all $\alpha \in \Gamma$,
- (b) $(5, 5, 5)\alpha f = (5, 5, 5)$ for all $\alpha \in \Gamma$,
- (c) (4,5,4)(1,2)f = f and (4,5,4)(2,3)f = f', (5,4,5)(2,3)f = f and (5,4,5)(1,2)f = f',
- (d) (4,4,5)(2,3)f = f and (4,4,5)(3,1)f = f', (5,5,4)(3,1)f = f and (5,5,4)(2,3)f = f',
- (e) (4,5,5)(1,2)f = f and (4,5,5)(3,1)f = f', (5,4,4)(3,1)f = f and (5,4,4)(1,2)f = f',

From the above cases we can easily verify that ρ is an ip - congruence on S.

Definition 2.8 An ip - congruence ξ on E(S) of S is said to be normal if for any α idempotent e and β -idempotent $f, a \in S$ and $a' \in V_{\gamma}^{\delta}(a), (e, f) \in \xi$ implies $(a'\delta e \alpha a, a'\delta f \beta a) \in \xi$ whenever $a'\delta e \alpha a, a'\delta f \beta a \in E(S)$.

Let ρ be an ip - congruence on a regular Γ - semigroup S. Then we can define a binary operation on S/ρ as $(a\rho)(b\rho)=(a\alpha b)\rho$ whenever $V_{\alpha}^{\beta}(a)\neq \phi$ for some $\beta\in\Gamma$. Note that $V_{\alpha}^{\beta}(a)\neq \phi$ for some $\alpha,\beta\in\Gamma$, because S is a regular Γ -semigroup. The operation is well defined because if $a\rho=a'\rho$ and $b\rho=b'\rho$ then

$$(a\rho)(b\rho)$$
 = $(a\alpha b)\rho$ (Since $V_{\alpha}^{\beta}(a) \neq \phi$ for some $\alpha, \beta \in \Gamma$)
= $(a\alpha b')\rho$
= $(a'\alpha_1 b')\rho$ (Since $V_{\alpha_1}^{\beta_1}(a') \neq \phi$ for some $\alpha_1, \beta_1 \in \Gamma$)
= $(a'\rho)(b'\rho)$.

Using Corollary 1.15 we can say that the operation is easily seen to be associative, and so S/ρ is a semigroup.

Definition 2.9 Let ρ be an ip - congruence on a regular Γ-semigroup S. Let $\alpha \in \Gamma$, then the subset $\{a \in S : a\rho \in E(S/\rho)\}$ of S is called the kernel of ρ and it is denoted by $Ker\rho$.

Definition 2.10 Let ρ be an ip - congruence on a regular Γ-semigroup S. Then the restriction of ρ to the subset E(S) is called the trace of ρ and it is denoted by $tr\rho$.

Theorem 2.11 Let ρ be an ip - congruence on a regular Γ-semigroup S. Let $a, b \in S$ and suppose that $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$ are such that $a'\beta b \in Ker\rho$ and either $(a\alpha a', b\gamma b'\delta a\alpha a') \in \rho$ or $(b\gamma b', a\alpha a'\beta b\gamma b') \in \rho$. Then $b\gamma a' \in Ker\rho$.

Proof: Let $a'\beta b \in Ker\rho$ for some $a' \in V_{\alpha}^{\beta}(a)$ and let $a'\beta b\rho e$ for some μ - idempotent e. If $(a\alpha a', b\gamma b'\delta a\alpha a') \in \rho$ for some $b' \in V_{\gamma}^{\delta}(b)$ then $(b\gamma a', b\gamma a'\beta b\gamma b'\delta a\alpha a') \in \rho$ which implies $(b\gamma a', b\gamma a'\beta b\gamma b'\delta a\alpha a') \in \rho$ and so

$$(b\gamma a')\beta(b\gamma a') \quad \rho \quad ((b\gamma a')\beta b\gamma b'\delta a')\beta(b\gamma a'\beta b\gamma b'\delta a\alpha a')$$

$$\rho \quad (b\gamma a')\beta(b\gamma b')\delta a\alpha(a'\beta b)\gamma(a'\beta b)\gamma b'\delta a\alpha a'$$

$$\rho \quad (b\gamma a')\beta b\gamma b'\delta a\alpha e\mu e\mu b'\delta a\alpha a'$$

$$\rho \quad b\gamma a'\beta b\gamma b'\delta a\alpha e\mu b'\delta a\alpha a'$$

$$\rho \quad b\gamma a'\beta b\gamma b'\delta a\alpha a'\beta b\gamma b'\delta a\alpha a'$$

$$= \quad (b\gamma a'\beta b\gamma b'\delta a\alpha a')\beta(b\gamma b'\delta a\alpha a')$$

$$\rho \quad (b\gamma a')\beta(a\alpha a')$$

$$\rho \quad (b\gamma a')\beta(a\alpha a')$$

$$, = \quad b\gamma a'.$$

Hence $b\gamma a' \in Ker \rho$.

If we now suppose that $(b\gamma b', a\alpha a'\beta b\gamma b') \in \rho$ for some $b' \in V_{\gamma}^{\delta}(b)$ then $(b\gamma a', a\alpha a'\beta b\gamma a') \in \rho$ and so

$$(b\gamma a')\beta(b\gamma a') \quad \rho \quad (a\alpha a')\beta b\gamma a')\beta(a\alpha a'\beta b\gamma a')$$

$$= \quad a\alpha(a'\beta b\gamma a'\beta b)\gamma a'$$

$$\rho \quad a\alpha e\mu e\mu a'$$

$$= \quad a\alpha e\mu a'$$

$$\rho \quad a\alpha a'\beta b\gamma a'$$

$$\rho \quad b\gamma a'.$$

Hence $b\gamma a' \in Ker \rho$.

Theorem 2.12 If ρ be an ip - congruence on a regular Γ-semigroup S then for all $a, b \in S$ if there exist $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$ such that $a'\beta b \in Ker\rho$, $(a\alpha a', b\gamma b'\delta a\alpha a') \in \rho$ and $(b'\delta b, b'\delta b\gamma a'\beta a) \in \rho$ then $(a, b) \in \rho$.

Proof: Let us suppose that $a, b \in S$ are such that for some $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$ such that $a'\beta b \in Ker\rho$, $(a\alpha a', b\gamma b'\delta a\alpha a') \in \rho$ and $(b'\delta b, b'\delta b\gamma a'\beta a) \in \rho$. Then IJLSM | December 2014, Available @ http://www.ulsm.org

$$a = a\alpha a'\beta a$$

 $\rho \quad b\gamma b'\delta a\alpha a'\beta a$
 $= b\gamma b'\delta a.$

and

$$b = b\gamma b'\delta b$$

$$\rho \quad b\gamma b'\delta b\gamma a'\beta a$$

$$= b\gamma a'\beta a.$$

Now by Theorem 2.11 $(b\gamma a')\rho \in E_{\beta}(S/\rho)$. Let $t\rho \in RS((b\gamma a')\rho, (a\alpha a')\rho)$.

Now let $x\rho = (a'\rho)\beta(t\rho)\beta((b\gamma a')\rho)$, then

and

$$b\gamma x\beta b$$
 ρ $b\gamma a'\beta t\beta b\gamma a'\beta b$
 ρ $b\gamma a'\beta t\beta b$
 ρ $b\gamma a'\beta t\beta b\gamma a'\beta a$
 ρ $b\gamma a'\beta t\beta a$
 ρ $b\gamma a'\beta t\beta a\alpha a'\beta a$
 ρ $b\gamma a'\beta a\alpha a'\beta a$
 ρ $b\gamma a'\beta a$

Hence $x\rho \in V_{\gamma}^{\beta}(b\rho)$. Now

$$(b\rho)\gamma(x\rho)\beta(a\rho) = (b\gamma a')\rho\beta t\rho\beta(b\gamma a')\rho\beta(a\alpha a')\rho\beta(a\rho)$$

$$= (b\gamma a')\rho\beta(a\alpha a')\rho\beta(a\rho)$$

$$= (b\gamma a')\rho\beta(a\rho)$$

$$= b\rho.$$

Also $(b\rho)\gamma(b'\rho) = (b\rho)\gamma(x\rho)\beta(b\rho)\gamma(b'\rho)$. Hence

$$a\rho = (b\rho)\gamma(b'\rho)\delta(a\rho)$$

 $= (b\rho)\gamma(x\rho)\beta(b\rho)\gamma(b'\rho)\delta(a\rho)$
 $= (b\rho)\gamma(x\rho)\beta(a\rho)$
 $= b\rho.$

Thus $(a, b) \in \rho$.

We now treat S as a right orthodox Γ -semigroup throughout the paper.

Definition 2.13 A pair (ξ, K) consisting of a normal ip - congruence ξ on E(S) and a normal partial Γ- subsemigroup K of S is said to be ip - congruence pair for S if for all $a, b \in S, a' \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$

(A)
$$e\gamma a \in K$$
, $(e, a\alpha a') \in \xi \Rightarrow a \in K$

(B)
$$a \in K \Rightarrow (a'\beta e\gamma a, a'\beta a'\beta e\gamma a\alpha a) \in \xi$$

Theorem 2.14 If (ξ, k) is an ip - congruence pair for S then for $a' \in V_{\alpha}^{\beta}(a)$, $b' \in V_{\gamma}^{\delta}(b)$ and $e \in E_{\mu_1}$ and $f \in E_{\mu_2}$

$$(i)$$
 $a\alpha b \in K$, $(a'\beta a, b\gamma b'\delta a'\beta a) \in \xi \Rightarrow a\alpha e\mu_1 b \in K$

$$(ii)$$
 $a \in K$, $(a\alpha a', f) \in \xi \Rightarrow (f\mu_2 e\mu_1 f, f\mu_2 a'\beta e\mu_1 a\alpha f) \in \xi$ whenever $f\mu_2 a'\beta e\mu_1 a\alpha f \in E(S)$

Proof: Let $a\alpha b \in K$ and $(a'\beta a, b\gamma b'\delta a'\beta a) \in \xi$. Then

$$(b'\delta e)\mu_1(e\mu_1b)\gamma(b'\delta e) = b'\delta(b\gamma b'\delta e)\mu_1(b\gamma b'\delta e)$$

 $= b'\delta(b\gamma b'\delta e)$ (Since S is right orthodox)
 $= b'\delta e.$

and

$$\begin{array}{ll} (e\mu_1b)\gamma(b'\delta e)\mu_1(e\mu_1b) & \quad (e\mu_1b\gamma b')\delta e\mu_1b\gamma b')\delta b \\ \\ (e\mu_1b\gamma b')\delta b \\ \\ e\mu_1b. \end{array}$$

Hence $b'\delta e \in V_{\gamma}^{\mu_1}(e\mu_1 b)$. Similarly $e\mu_1 a' \in V_{\mu_1}^{\beta}(a\alpha e)$. Again

$$(b'\delta e\mu_1a')\beta(a\alpha e\mu_1a')\beta(a\alpha e\mu_1b)\gamma(b'\delta e\mu_1a')$$

$$= (b'\delta e)\mu_1(e\mu_1b)\gamma(b'\delta e)\mu_1a'\beta a\alpha e\mu_1b\gamma b'\delta(e\mu_1a')\beta(a\alpha e)\mu_1(e\mu_1a')$$

$$= b'\delta e\mu_{\scriptscriptstyle 1}(e\mu_{\scriptscriptstyle 1}b\gamma b'\delta e\mu_{\scriptscriptstyle 1}a'\beta a)\alpha(e\mu_{\scriptscriptstyle 1}b\gamma b'\delta ea'\beta a)\alpha e\mu_{\scriptscriptstyle 1}e\mu_{\scriptscriptstyle 1}a'$$

$$= b'\delta e\mu_1 e\mu_1 b\gamma b'\delta e\mu_1 a'\beta a\alpha e\mu_1 e\mu_1 a'$$

$$= b'\delta e\mu_1 a'\beta a\alpha e\mu_1 e\mu_1 a'$$

$$= b'\delta e \mu_1 a'$$

Similarly we have $(a\alpha e\mu_1 b)\gamma(b'\delta e\mu_1 a')\beta(a\alpha e\mu_1 b) = a\alpha e\mu_1 b$ and we have $b'\delta e\mu_1 a' \in V_{\gamma}^{\beta}(a\alpha e\mu_1 b)$. Now $(a\alpha e\mu_1 b)\gamma(b'\delta e\mu_1 a') = a\alpha(a'\beta a)\alpha e\mu_1 b\gamma b'\delta e)\mu_1 a' \xi a\alpha(b\gamma b'\delta a'\beta a)\alpha(e\mu_1 b\gamma b'\delta e)\mu_1 a'$ since ξ is normal. Moreover $(a\alpha b)\gamma(b'\delta a')\beta(a\alpha e\mu_1 b)\gamma(b'\delta e\mu_1 a') \in E_{\beta}$ since $b'\delta a' \in V_{\gamma}^{\beta}(a\alpha b)$ and $(a\alpha b\gamma b'\delta a'\beta a\alpha e\mu_1 b\gamma b'\delta e\mu_1 a')\beta(a\alpha e\mu_1 b) = (a\alpha b)\gamma(b'\delta(a'\beta a\alpha e\mu_1 b\gamma b'\delta e\mu_1 a'\beta a\alpha e)\mu_1 b) \in K$ since $a\alpha b \in K$. Hence $a\alpha e\mu_1 b \in K$ by (A).

Let $a \in K$ and $(a\alpha a', f) \in \xi$. Then by condition (B) we have $(a'\beta e\mu_1 a, a'\beta a'\beta e\mu_1 a\alpha a) \in \xi$. Therefore

$$\begin{split} f\mu_2 e\mu_1 f & \xi & a\alpha a'\beta e\mu_1 f \\ & \xi & a\alpha a'\beta e\mu_1 a\alpha a' \\ & = & (a'\beta e\mu_1 a)\alpha a' \\ & \xi & a\alpha (a'\beta a'\beta e\mu_1 a\alpha a)\alpha a' (\text{Since } \xi \text{ is normal }) \\ & \xi & f\mu_2 a'\beta e\mu_1 a\alpha f. \end{split}$$

Hence the proof.

Given such a pair (ξ, K) we define a binary relation $\rho_{(\xi,K)}$ on S by $(a, b) \in \rho_{(\xi,K)}$ if and only if there exist $a' \in V_{\alpha}^{\beta}(a)$, $b' \in V_{\gamma}^{\delta}(b)$, $a'\beta b \in K$, $(a\alpha a', b\gamma b'\delta a\alpha a') \in \xi$, $(b'\delta b, b'\delta b\gamma a'\beta a) \in \xi$.

To simplify the notation, given a congruence pair (ξ, K) we denote $\rho_{(\xi,K)}$ simply by ρ unless otherwise stated.

Theorem 2.15 Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ be such that $(a, b) \in \rho$ if and only if for all $a^* \in V_{\alpha}^{\beta}(a)$, $b^* \in V_{\gamma}^{\delta}(b)$, $a^*\beta b \in K$, $(a\alpha a^*, b\gamma b^*\delta a\alpha a^*) \in \xi$, $(b^*\delta b, b^*\delta b\gamma a^*\beta a) \in \xi$.

Proof: Let $a, b \in S$ be such that $(a, b) \in \rho$. Then there exist $a' \in V_{\alpha_1}^{\beta_1}(a), b' \in V_{\gamma_1}^{\delta_1}(b)$ such that $a'\beta_1b \in K$, $(a\alpha_1a', b\gamma_1b'\delta a\alpha_1a') \in \xi$, $(b'\delta_1b, b'\delta_1b\gamma_1a'\beta_1a) \in \xi$. Since ξ is an ip-congruence pair on E(S). Now

$$a\alpha a^* = (a\alpha a')\beta_1(a\alpha a^*)$$

 $\xi = (b\gamma_1 b')\delta(a\alpha_1 a')\beta_1(a\alpha a^*)$
 $= (b\gamma b^*)\delta(b\gamma_1 b')\delta(a\alpha_1 a')\beta_1(a\alpha a^*)$
 $\xi = (b\gamma b^*)\delta(a\alpha_1 a')\beta_1(a\alpha a^*)$
 $= (b\gamma b^*)\delta(a\alpha a^*).$

and

$$\begin{array}{rcl} b^*\delta b &=& (b^*\delta b)\gamma_1(b'\delta_1 b) \\ & & \xi & (b^*\delta b)\gamma_1(b'\delta_1 b)\gamma_1(a'\beta_1 a) \\ &=& (b^*\delta b)\gamma_1(b'\delta_1 b)\gamma_1(a'\beta_1 a)\gamma(a^*\delta_1 a) \\ & & \xi & (b^*\delta b)\gamma_1(b'\delta_1 b)\gamma(a^*\delta a) \\ &=& (b^*\delta b)\gamma(a^*\delta a). \end{array}$$

To show that $a^*\beta b \in K$ notice that $a'\beta_1 b \in K$ and $(a\alpha_1 a', b\gamma_1 b'\delta_1 a\alpha_1 a') \in \xi$. Then by theorem 2.14 we have $a'\beta_1(a\alpha a^*)\beta b \in K$. Now since K is a full partial Γ -subsemigroup of S, we have

$$a^*\beta b = a^*\beta a\alpha a^*\beta b$$

 $= a^*\beta (a\alpha_1 a'\beta_1 a)\alpha a^*\beta b$
 $= (a^*\beta a)\alpha_1 (a'\beta_1 a\alpha a^*\beta b) \in K.$

Theorem 2.16 Let (ξ, K) be an ip - congruence pair and $a, b \in S$ be such that for some $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b), a'\alpha b \in K, (a\alpha a', b\gamma b'\delta a\alpha a') \in \xi$ and $(b'\delta b, b'\delta b\gamma a'\beta a) \in \xi$ then

- $(i) (a'\beta a, a'\beta a\alpha b'\delta b) \in \xi$
- (ii) $b'\delta a \in K$
- (iii) $b\gamma a' \in K$
- (iv) $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$.

Proof: (i) Let $x \in RS(a\alpha a', b\gamma b')$; then $b'\delta x\beta a \in V_{\gamma}^{\alpha}(a'\beta b)$ and $a'\beta b\gamma b'\delta x\beta a = a'\beta x\beta a$. Now

$$a\alpha a'\beta x = a\alpha a'\beta x\beta a\alpha a'$$

$$\xi \quad (a\alpha a')\beta x\beta (b\gamma b'\delta a\alpha a')$$

$$= (a\alpha a')\beta (b\gamma b')\delta (a\alpha a')$$

$$\xi \quad (a\alpha a')\beta (a\alpha a')$$

$$= a\alpha a'.$$

and hence by normality of ξ we have

$$a'\beta x\beta a = a'\beta(a\alpha a'\beta x)\beta a$$

 $\xi \quad a'\beta(a\alpha a')\beta a$
 $= a\beta a.$

Now by Theorem 2.14(ii) we have

$$a'\beta a = (a'\beta a)\alpha(a'\beta a)\alpha(a'\beta a)$$

$$\xi \quad (a'\beta a)\alpha(b'\delta x\beta a)\alpha(a'\beta a)\alpha(a'\beta b)\gamma(a'\beta a)$$

$$= a'\beta a\alpha b'\delta(x\beta a\alpha a')\beta b\gamma a'\beta a$$

$$= a'\beta a\alpha b'\delta x\beta b\gamma a'\beta a$$

$$= a'\beta a\alpha b'\delta x\beta b\gamma (b'\delta b\gamma a'\beta a)$$

$$\xi \quad a'\beta a\alpha b'\delta x\beta b\gamma b'\delta b$$

$$= a'\beta a\alpha b'\delta x\beta b.$$

and hence

$$(a'\beta a)\alpha(b'\delta b)$$
 ξ $(a'\beta a\alpha b'\delta x\beta b)\gamma(b'\delta b)$
= $a'\beta a\alpha b'\delta x\beta b$
 ξ $a'\beta a$.

Hence $(a'\beta a, a'\beta a\alpha b'\delta b) \in \xi$.

- (ii) Let $g \in RS(b\gamma b', a\alpha a')$. Then $a'\beta g\delta b \in V_{\alpha}^{\gamma}(b'\delta a)$. Now by theorem 2.14(i) we have $a'\beta g\delta b \in K$ since $g \in E_{\delta}, a'\beta b \in K$ and $(a\alpha a', b\gamma b'\delta a\alpha a')\xi$. Since K is normal, we have $b'\delta a \in K$.
- (iii) Now let $h \in RS(b'\delta b, a'\beta a)$, then $a\alpha h\gamma b' \in V^{\delta}_{\beta}(b\gamma a')$. Since $b'\delta a \in K$, K is normal and by (ii) we have $b\gamma b'\delta a\alpha a'\beta a\alpha h\gamma b' = b\gamma (b'\delta a\alpha h)\gamma b' \in K$ since $b'\delta a \in K$ and $h \in E(S) \subseteq K$. Now using (i) we have,

$$h\gamma a'\beta a = a'\beta a\alpha h\gamma a'\beta a$$

$$\xi \quad a'\beta a\alpha b'\delta b\gamma h\gamma a'\beta a$$

$$= a'\beta a\alpha b'\delta b\gamma a'\beta a$$

$$\xi \quad a'\beta a\alpha a'\beta a$$

$$= a'\beta a.$$

and we have

$$a\alpha h\gamma b'\delta b\gamma a' = a\alpha h\gamma b'$$

 $= a\alpha h\gamma a'\beta a\alpha a'$
 $\xi a\alpha a'\beta a\alpha a'$
 $= a\alpha a'$
 $\xi b\gamma b'\delta a\alpha a'$.

Hence by condition (A), $a\alpha h\gamma b' \in K$ and so $b\gamma a' \in K$ as required.

(iv) We now show that $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$. Let $h \in RS(b'\delta b, a'\beta a)$. Then $a\alpha h\gamma b' \in V_{\beta}^{\delta}(b\gamma a')$. Since

$$b'\delta b\gamma h = b'\delta b\gamma h\gamma b'\delta b$$

$$\xi \quad b'\delta b\gamma h\gamma b'\delta b\gamma a'\beta a$$

$$= b'\delta b\gamma h\gamma a'\beta a$$

$$= b'\delta b\gamma a'\beta a$$

$$\xi \quad b'\delta b.$$

we have,

$$b\gamma a'\beta(a\alpha h\gamma b') = b\gamma(a'\beta a\alpha h)\gamma b'$$

$$= b\gamma h\gamma b'$$

$$= b\gamma(b'\delta b\gamma h)\gamma b'$$

$$\xi b\gamma b'\delta b\gamma b'$$

$$= b\gamma b'.$$

Now by (iii) $b\gamma a' \in K$ and hence by theorem 2.14(ii), we have

$$b\gamma b' = (b\gamma b')\delta(b\gamma b')\delta(b\gamma b')$$

$$\xi \quad (b\gamma b')\delta(a\alpha h\gamma b')\delta(b\gamma b')\delta(b\gamma a')\beta(b\gamma b')$$

$$= b\gamma b'\delta a\alpha h\gamma a'\beta b\gamma b'$$

$$= b\gamma b'\delta a\alpha a'\beta a\alpha h\gamma a'\beta b\gamma b'$$

$$= (b\gamma b'\delta a\alpha a')\beta(a\alpha h\gamma a'\beta b\gamma b')$$

$$\xi \quad a\alpha a'\beta a\alpha h\gamma a'\beta b\gamma b'$$

$$= a\alpha h\gamma a'\beta b\gamma b'.$$

Hence

$$a\alpha a'\beta b\gamma b'$$
 ξ $(a\alpha a')\beta(a\alpha h\gamma a'\beta b\gamma b')$
= $a\alpha h\gamma a'\beta b\gamma b'$
 ξ $b\gamma b'$.

Thus $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$. Hence the theorem.

Theorem 2.17 Let (ξ, K) be an ip - congruence pair for S. Then $\rho = \rho_{(\xi,K)}$ is an equivalence relation on S.

Proof: Let (ξ, K) be an ip - congruence pair for S. Then ρ is clearly reflexive since $E(S) \subseteq K$ and ξ is reflexive. The symmetry of ρ follows from (i), (ii) and (iv) of theorem 3.13. To show that ρ is transitive, let $(a,b) \in \rho$ and $(b,c) \in \rho$. Also let $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$ and $c' \in V_{\mu}^{\nu}(c)$. Then by definition of ρ we have $(a\alpha a', b\gamma b'\delta a\alpha a') \in \xi, (b'\delta b, b'\delta b\gamma a'\beta a) \in \xi, a'\beta b \in K, (b\gamma b', c\mu c'\nu b\gamma b') \in \xi(c'\nu c, c'\nu c\mu b'\delta b) \in \xi, b'\delta c \in K$. Since ξ is compatible and transitive we have,

$$a\alpha a'$$
 ξ $b\gamma b'\delta a\alpha a'$
 ξ $c\mu c'\nu b\gamma b'\delta a\alpha a'$
 ξ $c\mu c'\nu a\alpha a'$.

and

Hence $(a\alpha a', c\mu c'\nu a\alpha a') \in \xi$ and $(c'\nu c, c'\nu c\mu a'\beta a) \in \xi$. On the other hand, by symmetry of ρ , we have $b'\delta a \in K$, $c'\nu b \in K$ and $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$. Let $g \in RS(c\mu c', b\gamma b')$ then $b'\delta g\nu a \in K$ by theorem 2.14(i). Therefore

$$(c'\nu b)\gamma(b'\delta g\nu a) = (c'\nu b)\gamma(b'\delta g\nu c)\mu c'\nu a \in K$$
 (1)

where $b'\delta g\nu c \in V^{\mu}_{\gamma}(c'\nu b)$. Again let $h \in RS(c\mu c', a\alpha a')$ then $a'\beta h\nu c \in V^{\mu}_{\alpha}(c'\nu a)$. Since $(b,c) \in \rho$ and ρ is symmetric, we have

$$c\mu c' = c\mu c'\nu c\mu c'$$

$$\xi \quad c\mu c'\nu b\gamma b'\delta c\mu c'$$

$$= c\mu c'\nu g\nu b\gamma b'\delta c\mu c'$$

$$\xi \quad c\mu c'\nu g\nu c\mu c'$$

$$= c\mu c'\nu g.$$

and since ξ is normal, we have

$$c'\nu c\xi c'\nu g\nu c = c'\nu b\gamma b'\delta g\nu c \tag{2}$$

Again since $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$ and $(c\mu c', b\gamma b'\delta c\mu c') \in \xi$ we have

 $c\mu c' \xi b\gamma b'\delta c\mu c'$

 $\xi = a\alpha a'\beta b\gamma b'\delta c\mu c'$

 $\xi = a\alpha a'\beta c\mu c'$

and hence similarly we can show that

$$c\mu c' \xi c' \nu h \nu c = c' \nu a \alpha a' \beta h \nu c$$
 (3)

Thus we have from (1) and (2) $(c'\nu b\gamma b'\delta g\nu c, c'\nu a\alpha a'\beta h\nu c) \in \xi$. Now from (1), (2) and (3) and by condition (A) we have $c'\nu a \in K$ and hence $(a,c) \in \rho$ which completes the proof.

Theorem 2.18 Let (ξ, K) be an ip - congruence pair on a right orthodox Γ-semigroup Sand $a' \in V_{\alpha_1}^{\beta_1}(a), b' \in V_{\alpha_2}^{\beta_2}(b), c' \in V_{\alpha_3}^{\beta_3}(c)$ then

- (i) $a \in K$ implies $(a\alpha, a')\xi \in V_{\alpha, 1}^{\beta_1}((a'\beta, a)\xi)$.
- (ii) $a \in K, x \in RS(a'\beta_1 a, a\alpha_1 a')$ implies that $(a\alpha_1 x\alpha_1 a', a\alpha_1 a') \in \xi$ and $(a'\beta_1 x\alpha_1 a, a'\beta_1 a) \in \xi$.
- (iii) $(a, b) \in \rho$, $g \in RS(c'\beta_3c, a\alpha_1a')$, $h \in RS(c'\beta_3c, b\alpha_2b')$ implies that $(b'\beta_2h\alpha_2b, b'\beta_2h\alpha_2b\alpha_2a'\beta_1g\alpha_2a) \in \xi$.
- (iv) $(a, b)\rho$, $g \in RS(a'\beta_1 a, c\alpha_3 c')$, $h \in RS(b'\beta_2 b, c\alpha_3 c')$ implies that $(a\alpha_1 g\alpha_1 a', b\alpha_2 h\alpha_2 b'\beta_2 a\alpha_1 g\alpha_1 a') \in \xi$.

Proof: (i) If $a \in K$ then by theorem 2.14(ii)

$$(a\alpha, a'\beta, a\alpha, a'\beta, a\alpha, a', (a\alpha, a')\beta, a'\beta, (a\alpha, a'\beta, a\alpha, (a\alpha, a')) \in \xi$$

i.e, $(a\alpha_1 a', (a\alpha_1 a')\beta_1(a'\beta_1 a)\alpha_1(a\alpha_1 a')) \in \xi$. Again since K is a totally regular Γ -subsemigroup of S we have $a' \in K$ and by similar argument we have $(a'\beta_1 a, (a'\beta_1 a)\alpha_1(a\alpha_1 a')\beta_1(a'\beta_1 a)) \in \xi$. Hence we have $(a\alpha_1 a')\xi \in V_{\alpha_1}^{\beta_1}((a'\beta_1 a)\xi)$.

(ii) Since $a \in K$ and $x \in RS(a'\beta_1 a, a\alpha_1 a')$, by theorem 2.14(ii) we have

$$((a\alpha_1a')\beta_1(a\alpha_1x\alpha_1a')\beta_1(a\alpha_1a'),(a\alpha_1a')\beta_1a'\beta_1(a\alpha_1x\alpha_1a')\beta_1a\alpha_1(a\alpha_1a')) \in \xi$$

i.e, $(a\alpha_1x\alpha_1a', (a\alpha_1a')\beta_1(a'\beta_1a)\alpha_1(a\alpha_1a')) \in \xi$. Hence using (i) we have $(a\alpha_1x\alpha_1a', a\alpha_1a') \in \xi$. Similarly we can show that $(a'\beta_1x\alpha_1a, a'\beta_1a) \in \xi$ by using $a' \in K$.

(iii) Let $(a,b) \in \rho$. Since ρ is symmetric we have $(b,a) \in \rho$. From theorem 3.12(iii) we have $a\alpha_1b' \in K$, $((a\alpha_1a')\xi,(b\alpha_2b')\xi) \in \mathcal{R}$ and $((a'\beta_1a)\xi,(b'\beta_2b)\xi) \in \mathcal{L}$ in $E(S)/\xi$. Since $g \in RS(c'\beta_3c,a\alpha_1a')$, $h \in RS(c'\beta_3c,b\alpha_2b')$, $x \in RS(a'\beta_1a,b'\beta_2b)$, we have $a'\beta_1g\alpha_3c' \in V_{\alpha_1}^{\beta_3}(c\alpha_3a)$,

 $b'\beta_{2}h\alpha_{3}c'\in V_{\alpha_{2}}^{\beta_{3}}(c\alpha_{3}b) \text{ and } b\alpha_{2}x\alpha_{1}a'\in V_{\beta_{2}}^{\beta_{1}}(a\alpha_{1}b'). \text{ Again let } t\in RS(g,(a\alpha_{1}b')\beta_{2}(b\alpha_{2}x\alpha_{1}a'))=\\RS(g,a\alpha_{1}x\alpha_{1}a'). \text{ Hence we have } (b\alpha_{2}a\alpha_{1}a')\beta_{1}t\alpha_{3}g\in V_{\beta_{2}}^{\alpha_{3}}(g\alpha_{3}a\alpha_{1}b') \text{ and } b\alpha_{2}x\alpha_{1}a'\beta_{1}t\alpha_{3}a\alpha_{1}b'=\\b\alpha_{2}x\alpha_{1}a'\beta_{1}t\alpha_{3}g\alpha_{3}(g\alpha_{3}a\alpha_{1}b')\in E_{\beta_{2}}. \text{ Again since } \xi \text{ is compatible and } (a'\beta_{1}a,a'\beta_{1}a\alpha_{1}b'\beta_{2}b)\in\\\xi,$

$$\begin{array}{rcl} a'\beta_1 a\alpha_1 x & = & a'\beta_1 a\alpha_1 x\alpha_1 a'\beta_1 a \\ & \xi & a'\beta_1 a\alpha_1 x\alpha_1 a'\beta_1 a\alpha_1 b'\beta_2 b \\ & = & a'\beta_1 a\alpha_1 b'\beta_2 b \\ & \xi & a'\beta_1 a. \end{array}$$

Hence by normality of ξ we have

$$(a\alpha_1 x \alpha_1 a', a\alpha_1 a') \in \xi \tag{4}$$

Also $(a\alpha_1b')\beta_2(b\alpha_2x\alpha_1a') = a\alpha_1x\alpha_1a'\xi a\alpha_1a'$ and $a\alpha_1b' \in K$, so by theorem 2.14(ii) we get $(a\alpha_1a')\beta_1t\alpha_2(a\alpha_1a')\xi(a\alpha_1a')\beta_1(b\alpha_2x\alpha_1a')\beta_1t\alpha_2(a\alpha_1b')\beta_2(a\alpha_1a')$.

Now

$$a\alpha_1 a'\beta_1 t = (a\alpha_1 a')\beta_1 (a\alpha_1 x\alpha_1 a')\beta_1 t$$

 $= (a\alpha_1 x\alpha_1 a')\beta_1 t$
 $= t.$

i.e,

$$a\alpha_{,}a'\beta_{,}t = t$$
 (5)

Now since $(a\alpha_1 a'\beta_1 b\alpha_2 b', b\alpha_2 b') \in \xi$ we have

$$t\alpha_3 a\alpha_1 a' \quad \xi \quad (a\alpha_1 a'\beta_1 b\alpha_2 b')\beta_2 (b\alpha_2 x\alpha_1 a')\beta_1 t\alpha_3 (a\alpha_1 b')\beta_2 (a\alpha_1 a')$$

$$\quad \xi \quad b\alpha_2 x\alpha_1 a'\beta_1 t\alpha_3 (a\alpha_1 b')\beta_2 (a\alpha_1 a').$$

Thus

$$t\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' \quad \xi \quad (b\alpha_2 x\alpha_1 a')\beta_1 t\alpha_3 (a\alpha_1 b')\beta_1 (b\alpha_2 b')$$

$$\xi \quad (b\alpha_2 x\alpha_1 a')\beta_1 t\alpha_3 (a\alpha_1 b')\beta_2 (b\alpha_2 b')$$

$$= \quad (b\alpha_2 x\alpha_1 a')\beta_1 t\alpha_2 (a\alpha_1 b').$$

i.e,

$$(t\alpha_3 b\alpha_2 b', (b\alpha_2 x\alpha_1 a')\beta_1 t\alpha_3 (a\alpha_1 b') \in \xi$$
 (6)

Now since $a\alpha_1 a'\beta_1 t = t$ and $a'\beta_1 t\alpha_3 a \in E_{\alpha_1}$, we have

$$b'\beta_2 b\alpha_2 x\alpha_1 a'\beta_1 t\alpha_3 a\alpha_1 b'\beta_2 b = b'\beta_2 b\alpha_2 x\alpha_1 a'\beta_1 a\alpha_1 a'\beta_1 t\alpha_3 a\alpha_1 a'\beta_1 a\alpha_1 b'\beta_2 b$$

$$\xi \quad b'\beta_2 b\alpha_2 a'\beta_1 a\alpha_2 x\alpha_1 a'\beta_1 a\alpha_1 b'\beta_2 b\alpha_2 a'\beta_1 t\alpha_3 a\alpha_1 a'\beta_1 a$$

$$= b'\beta_2 b\alpha_2 a'\beta_1 a\alpha_2 x\alpha_1 b'\beta_2 b\alpha_2 a'\beta_1 t\alpha_3 a$$

$$= b'\beta_2 b\alpha_2 a'\beta_1 a\alpha_2 b'\beta_2 b\alpha_2 a'\beta_1 t\alpha_3 a$$

$$\xi \quad b'\beta_2 b\alpha_2 a'\beta_1 t\alpha_2 a.$$

Thus

$$(b'\beta_2b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b, b'\beta_2b\alpha_2a'\beta_1t\alpha_3a) \in \xi$$
 (7)

Again

$$\begin{split} h\alpha_3t\alpha_3b\alpha_2b' &= h\alpha_3c'\beta_3c\alpha_3t\alpha_3b\alpha_2b'\\ &= h\alpha_3c'\beta_3c\alpha_3a\alpha_1a'\beta_1t\alpha_3b\alpha_2b' \text{ (by (5))}\\ &= h\alpha_3c'\beta_3c\alpha_3g\alpha_3a\alpha_1a'\beta_1t\alpha_3b\alpha_2b'\\ &= h\alpha_3c'\beta_3c\alpha_3g\alpha_3t\alpha_3b\alpha_2b'\\ &\in h\alpha_3c'\beta_3c\alpha_3g\alpha_3t\alpha_3a\alpha_1a'\beta_1b\alpha_2b' \text{ (since } (b,a) \in \rho)\\ &\xi h\alpha_3c'\beta_3c\alpha_3g\alpha_3t\alpha_3a\alpha_1x\alpha_1a'\beta_1b\alpha_2b' \text{ (By (4))}\\ &= h\alpha_3c'\beta_3c\alpha_3g\alpha_3a\alpha_1x\alpha_1a'\beta_1b\alpha_2b'\\ &\xi h\alpha_3c'\beta_3c\alpha_3g\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3c'\beta_3c\alpha_3g\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3a\alpha_1a'\beta_1b\alpha_2b'\\ &= h\alpha_3b\alpha_2b' \end{split}$$

Thus

$$(h\alpha_3 t\alpha_3 b\alpha_2 b', h\alpha_3 b\alpha_2 b') \in \xi$$
 (8)

Now from (6) and (8) we have

$$(h\alpha_3b\alpha_2b', h\alpha_3(b\alpha_2x\alpha_1a')\beta_1t\alpha_3(a\alpha_1b')) \in \xi$$

Since ξ is normal and $b'\beta_2h\alpha_3b \in E_{\alpha_2}$, we have

$$(b'\beta_2h\alpha_3b)\alpha_2x\alpha_1(a'\beta_1t\alpha_3a)\alpha_1(b'\beta_2b) \in E_{\alpha_2}$$

Hence

$$(b'\beta_2h\alpha_3b, b'\beta_2h\alpha_3b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b) \in \xi$$

Also from (7) we have

$$b'\beta_2h\alpha_3b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b = (b'\beta_2h\alpha_3b)\alpha_2(b'\beta_2b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b)$$

$$\xi \quad (b'\beta_2h\alpha_3b)\alpha_2(b'\beta_2b\alpha_2a'\beta_1t\alpha_3a)$$

$$= b'\beta_2h\alpha_3b\alpha_2a'\beta_1t\alpha_2a.$$

Thus

$$(b'\beta_2h\alpha_3b, b'\beta_2h\alpha_3b\alpha_2a'\beta_1t\alpha_3a) \in \xi$$

Since $a\alpha_1 a'\beta_1 g = g$ and $t\alpha_3 g = t$ we have

$$\begin{array}{lll} b'\beta_2h\alpha_3b\alpha_2a'\beta_1g\alpha_3a & \xi & b'\beta_2h\alpha_3b\alpha_2a'\beta_1t\alpha_3a\alpha_1a'\beta_1g\alpha_3a\\ \\ &=&b'\beta_2h\alpha_3b\alpha_2a'\beta_1t\alpha_3g\alpha_3a\\ \\ &=&b'\beta_2h\alpha_3b\alpha_2a'\beta_1t\alpha_3a\\ \\ &\xi & b'\beta_2h\alpha_3b. \end{array}$$

Hence $(b'\beta_2h\alpha_3bb'\beta_2h\alpha_3b\alpha_2a'\beta_1g\alpha_3a) \in \xi$. Which completes the proof. (iv) is similar to (iii).

Theorem 2.19 Let (ξ, K) be an ip - congruence pair of S. Then ρ is an ip - congruence on S.

Proof: Let (ξ, K) be a congruence pair of S. Let $a, b, c \in S$ be such that $(a, b) \in \rho$. Then for any $a' \in V_{\alpha_1}^{\beta_1}(a), b' \in V_{\alpha_2}^{\beta_2}(b)$ we have $a'\beta_1b \in K$, $(a\alpha_1a', b\alpha_2b'\beta_2a\alpha_1a') \in \xi$ and $(b'\beta_2b, b'\beta_2b\alpha_2a'\beta_1a) \in \xi$. To show that ρ is an ip - congruence on S we are to show only $(c\alpha_3a, c\alpha_3b) \in \rho$ and $(a\alpha_1c, b\alpha_2c) \in \rho$ for any $c \in S$ with $V_{\alpha_3}^{\beta_3}(c) \neq \phi$. Let $c' \in V_{\alpha_3}^{\beta_3}(c)$. Again let $g \in RS(c'\beta_3c, a\alpha_1a')$ and $h \in RS(c'\beta_3c, b\alpha_2b')$. Then $a'\beta_1g\alpha_3c' \in V_{\alpha_1}^{\beta_3}(c\alpha_3a)$ and $b'\beta_2h\alpha_3c' \in V_{\alpha_2}^{\beta_3}(c\alpha_3b)$. Also $(c\alpha_3a)\alpha_1(a'\beta_1g\alpha_3c') = c\alpha_3g\alpha_3c'$ and $(c\alpha_3b)\alpha_2(b'\beta_2h\alpha_3c') = c\alpha_3h\alpha_3c'$. Now $(a,b) \in \rho$ and hence

$$\begin{split} c'\beta_3c\alpha_3g &= c'\beta_3c\alpha_3a\alpha_1a'\beta_1g \\ \xi &= (c'\beta_3c)\alpha_3(b\alpha_3b'\beta_3a\alpha_1a')\beta_1g \\ &= (c'\beta_3c)\alpha_3h\alpha_3(b\alpha_3b')\beta_3(a\alpha_1a')\beta_1g \\ \xi &= (c'\beta_3c)\alpha_3h\alpha_3(a\alpha_1a')\beta_1g \\ &= (c'\beta_3c)\alpha_3h\alpha_3g. \end{split}$$

Again $c\alpha_3h\alpha_3c'$ and $c\alpha_3h\alpha_3g\alpha_3c'$ are in E_{β_3} , as S is a right orthodox Γ -semigroup and hence by normality of ξ we have

$$\begin{array}{rcl} c\alpha_3g\alpha_3c' & \xi & c\alpha_3(c'\beta_3c\alpha_3g)\alpha_3c'\\ & \xi & c\alpha_3(c'\beta_3c\alpha_3h\alpha_3g)\alpha_3c'\\ & = & c\alpha_3h\alpha_3g\alpha_3c'\\ & = & (c\alpha_3h\alpha_3c')\beta_3(c\alpha_3g\alpha_3c'). \end{array}$$

i.e,

$$(c\alpha_3 g\alpha_3 c', (c\alpha_3 h\alpha_3 c')\beta_3 (c\alpha_3 g\alpha_3 c')) \in \xi$$
 (9)

Now $b'\beta_2h\alpha_3b=(b'\beta_2h\alpha_3c')\beta_3(c\alpha_3b)$ and $a'\beta_1g\alpha_3a=(a'\beta_1g\alpha_3c')\beta_3(c\alpha_3a)$ and by Theorem 2.16(iii) we have

$$(b'\beta_2h\alpha_3b\,,\,b'\beta_2h\alpha_3b)\alpha_2(a'\beta_1g\alpha_3a))\in\xi \eqno(10)$$

Also by Theorem 2.14(i) we have

$$(a'\beta_1 g\alpha_3 c')\beta_3 (c\alpha_3 b) = a'\beta_1 (g\alpha_3 c'\beta_3 c)\alpha_3 b = a'\beta_1 g\alpha_3 b \in K$$
 (11)

Since $a'\beta_1b \in K$ and $(a\alpha_1a', b\alpha_2b'\beta_2a\alpha_1a') \in \xi$.

From (9),(10) and (11) we have

$$(c\alpha_3 a, c\alpha_3 b) \in \xi$$
 (12)

We now show that $(a\alpha_1c, b\alpha_2c) \in \xi$. For this let $g \in RS(a'\beta_1a, c\alpha_3c')$ and $h \in RS(b'\beta_2b, c\alpha_3c')$. Then $c'\beta_3g\alpha_1a' \in V_{\alpha_3}^{\beta_2}(b\alpha_2c)$. Now since K is a full self conjugate Γ -subsemigroup of S and $a'\beta_1b \in K$, we have

$$(c'\beta_3 g\alpha_1 a')\beta_1(b\alpha_2 c) = c'\beta_3(g\alpha_1(a'\beta_1 b))\alpha_2 c \in K$$
 (13)

Now $(a\alpha_1c)\alpha_3(c'\beta_3g\alpha_1a') = a\alpha_1g\alpha_1a'$ and $(b\alpha_2h\alpha_2b')$ and from 4(ii) we have

$$(a\alpha_1 g\alpha_1 a', (b\alpha_2 h\alpha_2 b')\beta_2 (a\alpha_1 g\alpha_1 a')) \in \xi$$
 (14)

Again $(c'\beta_3g\alpha_1a')\beta_1(a\alpha_1c)=c'\beta_3g\alpha_1c$ and $(c'\beta_3h\alpha_2b')\beta_2(b\alpha_2c)=c'\beta_3h\alpha_2c$. Now

$$\begin{split} h\alpha_2 c\alpha_3 c' &= h\alpha_2 b' \beta_2 b\alpha_2 c\alpha_3 c' \\ \xi &\quad h\alpha_2 (b' \beta_2 b\alpha_2 a' \beta_1 a)\alpha_1 c\alpha_3 c' \\ &= (h\alpha_2 b' \beta_2 b)\alpha_2 (a' \beta_1 a\alpha_1 g\alpha_1 c\alpha_3 c') \\ \xi &\quad h\alpha_2 b' \beta_2 b\alpha_2 g\alpha_1 c\alpha_3 c' \\ &= h\alpha_2 g\alpha_1 c\alpha_3 c'. \end{split}$$

Now by normality of ξ we have $c'\beta_3h\alpha_2c\,\xi\,c'\beta_3h\alpha_2g\alpha_1c=(c'\beta_3h\alpha_2c)\alpha_3(c'\beta_3g\alpha_1c)$. Thus

$$(c'\beta_3h\alpha_2c, (c'\beta_3h\alpha_2c)\alpha_3(c'\beta_3g\alpha_1c)) \in \xi$$
 (15)

From (13),(14) and (15) we have $(a\alpha_1 c, b\alpha_2 c) \in \xi$. Hence ρ is an equivalence relation by Theorem (4) ρ is an ip - congruence on S.

Theorem 2.20 Let S be a right orthodox Γ-semigroup. If (ξ, K) is an ip - congruence pair for S then $\rho_{(\xi,K)}$ is an ip - congruence on S with trace ξ and Kernel K. Conversely, if ρ is an ip - congruence on S then $(tr\rho, Ker\rho)$ is an ip - congruence pair for S and $\rho = \rho_{(tr\rho, Ker\rho)}$

Proof:

Let (ξ, K) be an ip - congruence pair for S. Then by theorem 2.17 $\rho = \rho_{(\xi,K)}$ is an ip - congruence on S. We now show that $tr\rho = \xi$ and $Ker\rho = K$.

Let e be an α -idempotent and f be a β -idempotent and let $(e, f) \in \rho$. Since $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$ we have $(e, f\beta e) \in \xi$ and $(f, f\beta e) \in \xi$. Since ξ is an equivalence relation we

have $(e, f) \in \xi$. i.e, $tr\rho \subseteq \xi$. Again suppose that for $e \in E_{\alpha}$ and $f \in E_{\beta}, (e, f) \in \xi$. Let $x \in V_{\alpha_1}^{\beta_1}(e)$ and $y \in V_{\alpha_2}^{\beta_2}(f)$. Since $e \in K$ and K is regular, $x \in K$ and hence $x\beta_1 f \in K$ since K is a Γ -subsemigroup. Again

$$\begin{array}{rcl} y\beta_2f &=& y\beta_2f\beta f \\ & \xi & (y\beta_2f)\beta e \\ & \xi & (y\beta_2f)\beta(e\alpha_1x\beta_1e) \\ & \xi & (y\beta_2f)\beta f\alpha_2x\beta_1e \\ & \xi & (y\beta_2f)\alpha_2(x\beta_1e). \end{array}$$

and

$$\begin{array}{rcl} e\alpha_1 x & = & e\alpha e\alpha_1 x \\ & \xi & f\alpha_2(e\alpha_1 x) \\ & = & (f\alpha_2 y\beta_2 f)\alpha_2(e\alpha_1 x) \\ & = & (f\alpha_2 y)\beta_2(f\alpha_2 e\alpha_1 x) \\ & \xi & (f\alpha_2 y)\beta_2(e\alpha e\alpha_1 x) \\ & = & (f\alpha_2 y)\beta_2(e\alpha_1 x). \end{array}$$

Hence $x\beta_1 f \in K$ and $(e\alpha_1 x, (f\alpha_2 y)\beta_2(e\alpha_1 x)) \in \xi$ and $(y\beta_2 f, (y\beta_2 f)\alpha_2(x\beta_1 e)) \in \xi$. Thus $(e, f) \in \rho$ and hence $\xi \subseteq tr\rho$. i.e, $tr\rho = \xi$.

Let us now show that $Ker\rho = K$. Let $a \in Ker\rho$. Then there exists $e \in E_{\alpha}$ such that $(a,e) \in \rho$. Hence we have $a'\delta e \in K$ and $(a\gamma a', e\alpha e\gamma a') \in \xi$ for any $a' \in V_{\gamma}^{\delta}(a)$. Hence by Theorem 2.16(ii) we have $e\alpha a \in K$. Again since $e\alpha a = (e\alpha a\gamma a')\delta a$, by condition (A) we have $a \in K$. Thus $Ker\rho \subseteq K$. Conversely let $a \in K$. Let $a' \in V_{\alpha}^{\beta}(a)$ and $x \in RS(a'\beta a, a\alpha a')$ then $a'\beta x\alpha a' \in V_{\alpha}^{\beta}(a\alpha a)$. Hence by Theorem 2.18(ii) we have $a\alpha a' \notin a\alpha x\alpha a' = a\alpha(a\alpha a'\beta x\alpha a') = (a\alpha a)\alpha(a'\beta x\alpha a')$ and $a'\beta a \notin a'\beta x\alpha a = a'\beta x\alpha a'\beta a\alpha a = (a'\beta x\alpha a')\beta(a\alpha a)$. Again $a \in K$ implies $a' \in K$ and so $a'\beta a\alpha a \in K$ since K is totally regular Γ -subsemigroup of S. Hence we have $(a, a\alpha a) \in \rho$. This implies $a \in Ker\rho$. Hence $K = Ker\rho$.

Conversely suppose that ρ is an ip - congruence. Then $tr\rho$ is a normal ip - congruence on E(S) and $Ker\rho$ is a normal partial Γ -subsemigroup of S. Let us now show that $(tr\rho, \ker \rho)$ satisfies conditions (A) and (B). To show (A), let for $a \in S$, $a' \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$, $e\gamma a \in Ker\rho$ and $(e, a\alpha a') \in tr\rho$. Now

$$a = a\alpha a'\beta a$$

 $= (a\alpha a')\beta a$
 $\rho = e\gamma a(\text{since } \rho \text{ is an ip - congruence})$
 $\rho = f$.

for some δ -idempotent f. Hence $a \in Ker \rho$. Thus the condition (A) holds.

Next let $(a, f) \in \rho$ for some δ -idempotent f. Since $a \in Ker\rho, a' \in ker\rho$ for every $a' \in V_{\alpha}^{\beta}(a)$. Let $(a', g) \in \rho$ for some μ -idempotent g. Now

$$a'\beta a'\beta e\gamma a\alpha a$$
 ρ $g\mu g\mu e\gamma f\delta f$
 $=$ $g\mu e\gamma f$
 ρ $a'\beta e\gamma a$.

Thus the condition (B) holds.

We now show that $\rho = \rho_{(tr\rho,Ker\rho)}$. Let $(a,b) \in \rho$ and $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$. Now since ρ is an ip - congruence $a'\beta b\rho a'\beta a$. Hence $a'\beta b \in Ker\rho$. Again since $(a,b) \in \rho$ and ρ is an ip - congruence on S we have

$$a\alpha a'$$
 ρ $b\gamma a'$
 $=$ $b\gamma b'\delta b\gamma a'$
 ρ $b\gamma b'\delta a\alpha a'$.

and

$$b'\delta b \quad \rho \quad b'\delta a$$

= $b'\delta a\alpha a'\beta a$
 $\rho \quad b'\delta b\gamma a'\beta a$.

Thus we can say that $\rho \subseteq \rho_{(tr\rho,Ker\rho)}$. Converse case follows from Theorem 2.12. Hence the proof.

References

- Chattopadhyay, S.: Right orthodox Γ-semigroup; Southeast Asian Bull. of Mathematics (2005)29 1-18.
- [2] Gomes, Gracinda M.S.: Orthodox congruences on regular semigroup; Semigroup Forum(1988): 149 166.

- Howie J.M.: An introduction to semigroup Theory; Clarendon Press. Oxford, 1995.
- [4] Pastijn, F. and M. Petrich.: Congruences on regular semigroups; Trans. Amer. Math. Soc. 295(1986), 607-633.
- [5] Saha, N. K.: On Γ-semigroup II; Bull. Cal. Math. Soc., Vol 79 (1987), 331-335.
- [6] Sen, M. K. and Saha, N. K.: On Γ-semigroup I; Bull. Cal. Math. Soc., Vol 78 (1986), 181-186.