Continuous Solutions of a Quadratic Integral Equation

Mahmoud M. El-Borai, Wagdy G. El–Sayed and Amany M. Moter Department of Mathematics, Faculty of Science, Alexandria University, Alexandria – Egypt

m_m_elborai@yahoo.com, wagdy.goma@yahoo.com, aammmm_833@yahoo.co.uk

Abstract: An existence theorem for a quadratic integral equation is proved by using Darbo fixed point theorem via a measure of noncompact -ness. The solution will be in the class C(I) of continuous functions on the interval I = [0, M]. Finally, the existence of a fractional integral equation will be investigated.

Keywords: Quadratic integral equation, Hausdorff measure of noncompactness, Modulus of continuity, Superposition operator, Darbo fixed point theorem.

1- Introduction. Due to the great importance of the integral equations for many scientific branches such as physics, engineering, economics and biology [5,6,7,8], we discuss a certain kind of the class of integral equations, that is the class of the quadratic integral equations, which take the form:

 $x(t) = g(t) + (Tx)(t) \int_0^t k(t,s) f(s,x(s)) ds, \ t \in I \ (1)$

This kind of integral equations are inserted in the theories of radiative transfer and neutron transport and in the kinetic theory of gases [6,13].

This equation is a general form of another equation that was investigated in [3, 10], another type of this equation was treated in the class of monotonic functions [12].

The goal of this paper is to prove the existence theorem of equation (1) in the class C(I) of functions defined and continuous on the interval I = [0, M].

2- Preliminaries. To perform our main theorem, first let E be a Banach space with a norm $\|.\|$ and θ its zero vector. Denote by B_r the closed ball in E centered at θ and its radius r.

The modulus of continuity $\omega(x, \varepsilon)$ of a function $x \in X, X$ is a nonempty bounded subset of the class C(I), $\varepsilon > 0$ is defined as [2]:

$$\omega(x,\varepsilon) = \sup\{|x(t) - x(s)| : t, s \in I, |t - s| \le \varepsilon\}$$
(2)

From this definition, we can see that $\omega(x,\varepsilon) < \varepsilon'$ if the function $\mathcal{X}(t)$ is continuous on I.

Next, let us put

$$\omega_0(X) = \lim_{\varepsilon \to 0} \sup\{\omega(x,\varepsilon) \colon x \in X\}$$

For our benefit, we can consider the case in which the Banach space E is the space $C\left(I
ight)$, with standard norm

 $||x|| = max\{|x(t)|:t \in I\}$

Further, let us define the following quantities [12]:

$$d(x) = \sup\{ |x(s) - x(t)| - [x(s) - x(t)] : t, s \in I, t \le s \},$$
(3)

and

$$d(X) = \sup\{ d(x) \colon x \in X \}$$

Notice that d(X) = 0 if and only if all functions belonging to X are nondecreasing on .

Now , let us define the function μ by putting

$$\mu(x) = \omega_0(X) + d(X).$$

It can be proved that the function μ is a measure of noncompactness in the space C(I) [4].

Next, we will quote Darbo fixed point theorem [9]:

Theorem (1). Let Q be a nonempty, bounded, closed and convex subset of the Banach space E and let $A: Q \to Q$ be a continuous operator such that $\mu(AX) \leq c\mu(X)$ for any nonempty subset X of Q, $c\epsilon[0,1]$ is a constant, where μ is a measure of noncompactness, then A has at least one fixed point in Q.

In the sequence, we will define the superposition operator

$$(Fx)(t) = f(t, x(t)) \quad (4)$$

generated by the function

$$f = f(t, x) \colon [0, 1] \times R \to R$$

and we have the following theorem [1]:

Theorem (2). The superposition operator F maps continuously the space C(I) into itself iff f is continuous on $I \times R$.

In the sequel, we define the linear integral operator

$$(Kx)(t) = \int_0^t k(t,s)x(s)ds, \quad (5)$$

where

$$k = k(t,s): I \times I \to R$$

and we will prove the following lemma:

Lemma (3). If $k = k(t, s): I \times I \to R$ is continuous for both two variables t and s, then the linear operator K, defined by (5), maps continuously the space C(I) into itself.

Proof:

For $\varepsilon > 0$, assume that $||x - y|| < \varepsilon$, then we have

 $|(Kx)(t) - (Ky)(t)| \le \int_0^t |k(t,s)| |x(s) - y(s)| ds < \varepsilon \int_0^t |k(t,s)| ds$

Since k(t,s) is continuous on $I \times I$, then it is bounded and so the continuity of K is proved.

Next, if $x \in C(I)$, then for $\varepsilon > 0$, such that $|t_2 - t_1| < \varepsilon, t_2 > t_1$ belong to *I*, we have

$$|(Kx)(t_2) - (Kx)(t_1)| < \int_0^{t_2} |k(t_2, s) - k(t_1, s)| \, |x(s)| \, ds + + \int_{t_1}^{t_2} |k(t_1, s)| \, |x(s)| \, ds$$

Due to the continuity of k and x, we deduce that $Kx \in C(I)$.

3- Main Result. This section is devoted to discuss the solvability of the integral equation (1) in the space C(I). For our purposes, we assume that

$$(Hx)(t) = g(t) + (Tx)(t) \int_{0}^{t} k(t,s) f(s,x(s)) ds, \qquad t \in I = [0,M]$$

Then equation (1) becomes

$$x = Hx = g + (Tx)KF(x),$$

Where *F* is the superposition operator generated by the function *f* and *K* is the linear integral operator generated by the kernel k(t, s) defined above by (4) and (5) respectively.

We will investigate the integral equation (1) under the following

assumptions:

- (i) the function g is a nondecreasing , nonnegative and continuous on I ,
- (ii) the operator $T: C(I) \to C(I)$ is a bounded linear operator
- (iii) the function $f = f(t, x(t)) : I \times R \to R$ is continuous such that $f : I \times R_+ \to R_+$ and there is a function $m: R_+ \to R_+$ such that $|f(t, x(t))| \le m(|x|)$ for $t \in I$,
- (iv) $k = k(t,s): I \times I \to R_+$ is continuous with respect to its both variables t and s such that $k(t,s) < c, \forall t, s \in I$, where *c* is positive constant c > 0 and the linear integral operator *K* generated by k(t,s) maps R_+ into itself,
- (v) $d(Tx) \le ||T|| d(x)$ for any nonnegative function $x \in C(I)$,

||g|| + M||T||rcm(r) < r

has a positive solution r_0 such that $M ||T|| c m(r_0) < 1$

Now we can formulate the main existence theorem

Theorem 4. If the assumptions (i) – (vi) are satisfied, then equation (1) has at least one solution $x \in C(I)$.

Proof:

Using our assumptions (i) - (iv) and lemma 3, we can deduce that *H* is continuous.

Also, let $x \in C(I)$, $|t_2 - t_1| < \delta$, such that $\delta > 0$ and t_2 , $t_1 \in I$, $t_2 > t_1$, we have :

 $|(Hx)(t_2) - (Hx)(t_1)| = |g(t_2) - g(t_1) + + Tx(t_2) \int_0^{t_2} k(t_2, s) f(s, x(s)) ds - Tx(t_1) \int_0^{t_1} k(t_1, s) f(s, x(s)) ds | ds - Tx(t_1) \int_0^{t_2} k(t_1, s) ds | ds - Tx(t_1) ds | ds - Tx(t_1) ds | ds - Tx(t_1) ds | ds -$

 $\leq |g(t_2) - g(t_1)| + |Tx(t_2) \int_0^{t_2} k(t_2, s) f(s, x(s)) ds -$ $- Tx(t_2) \int_0^{t_2} k(t_1, s) f(s, x(s)) ds + Tx(t_2) \int_0^{t_2} k(t_1, s) f(s, x(s)) ds -$ $Tx(t_2) Ot 1 kt 1, s f s, x s ds -$ $- Tx(t_2) \int_0^{t_1} k(t_1, s) f(s, x(s)) ds + Tx(t_2) \int_0^{t_2} k(t_1, s) f(s, x(s)) ds -$ $- Tx(t_2) \int_0^{t_1} k(t_1, s) f(s, x(s)) ds + Tx(t_2) \int_0^{t_2} k(t_1, s) f(s, x(s)) ds -$ $Tx(t_2) Ot 1 kt 1, s f s, x s ds -$

$$-Tx(t_1)\int_0^{t_1}k(t_1,s)f(s,x(s))ds\Big|$$

 $\leq |g(t_2) - g(t_1)| + |Tx(t_2)| \int_0^{t_2} |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds +$

+
$$|Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds +$$

+
$$|Tx(t_2) - Tx(t_1)| \int_0^{t_1} |k(t_1, s)| |f(s, x(s))| ds$$
 (6)

$$< \varepsilon_1 + ||T|| r M \varepsilon_2 m(r) + ||T|| r \delta cm(r) + ||T|| |x(t_2) - x(t_1) |Mcm(r)|$$

Where $|g(t_2) - g(t_1)| < \varepsilon_1 |k(t_2, s) - k(t_1, s)| < \varepsilon_2$

The last estimate yields that the operator H maps C(I) into itself.

Next, For $x \in B_r$ and using the assumption (iii), (vi) and Lemma 3 we have:

$$\begin{aligned} |Hx(t)| &\leq |g(t)| + |Tx(t)| \int_0^t |k(t,s)| |f(s,x(s))| ds \\ &\leq ||g|| + ||T|| ||x|| \int_0^t |k(t,s)| |f(s,x(s))| ds \\ &\leq ||g|| + M ||T|| rcm(r) < r \end{aligned}$$

Hence, there is a positive number r_0 with $M||T||c m(r_0) < 1$ such that the operator H transforms the ball B_{r_0} into itself.

Let

$$B_{r_0}^+ = \{ x \in B_{r_0} : x(t) \ge 0, t \in I \}$$

Note that, $B_{r_0}^+$ is nonempty, bounded, closed and convex subset of B_{r_0} (see [11]).

Furthermore, for a nonempty subset $X \subset B_{r_0}^+$, take a function $x \in X$ and for $\delta > 0$, let $|t_2 - t_1| < \delta$, $t_1, t_2 \in I$, $t_2 > t_1$, then we have (using inequality (6) and our assumptions):

$$|(Hx)(t_2) - (Hx)(t_1)| \le \omega(g,\varepsilon) + ||T|| r_0 \varepsilon Mm(r_0) +$$

 $+ \|T\|r_0 c \delta m(r_0) + |Tx(t_2) - Tx(t_1)| M c m(r_0)$

 $\overline{\langle \omega(g,\varepsilon) + \|T\|r_0\varepsilon Mm(r_0) + \|T\|r_0c\delta m(r_0) + \|T\|\omega(x,\varepsilon)Mc\ m(r_0).}$

As $\varepsilon \to 0$, since *g* is continuous, we obtain

$$\omega(HX) \le \|T\| Mcm(r_0)\omega(X) \qquad (7)$$

Finally, choose $x \in X$ and $t_2, t_1 \in I$, $t_2 > t_1$ such that $(t_2 - t_1) < \delta$ then we have :

$$\begin{split} |(Hx)(t_2) - (Hx)(t_1)| - [(Hx)(t_2) - (Hx)(t_1)] &= \\ &= |g(t_2) - g(t_1) + Tx(t_2) \int_{0}^{t_2} k(t_2, s) f(s, x(s)) ds - \\ &- Tx(t_1) \int_{0}^{t_1} k(t_1, s) f(s, x(s)) ds - [g(t_2) - g(t_1) + \\ &+ Tx(t_2) \int_{0}^{t_2} k(t_2, s) f(s, x(s)) ds - Tx(t_1) \int_{0}^{t_1} k(t_1, s) f(s, x(s)) ds] \\ &\leq |g(t_2) - g(t_1)| - [g(t_2) - g(t_1)] + \\ &+ |Tx(t_2) \int_{0}^{t_2} k(t_2, s) f(s, x(s)) ds - Tx(t_1) \int_{0}^{t_1} k(t_1, s) f(s, x(s)) ds] \\ &- [Tx(t_2) \int_{0}^{t_2} k(t_2, s) f(s, x(s)) ds - Tx(t_1) \int_{0}^{t_1} k(t_1, s) f(s, x(s)) ds] \\ &+ |Tx(t_2)| \int_{0}^{t_2} |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds - \\ &- [Tx(t_2)] \int_{0}^{t_2} |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| f(s, x(s))| ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| f(s, x(s))| ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| f(s, x(s)) ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_2, s) - k(t_1, s)| f(s, x(s)) ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_1, s)| f(s, x(s)) ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_1, s)| f(s, x(s)) ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_1, s)| f(s, x(s)) ds - \\ &- [Tx(t_2)] \int_{t_1}^{t_2} |k(t_1, s)| f(s, x(s)) ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| f(s, x(s)) ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}^{t_2} |k(t_1, s)| |f(s, x(s))| ds + \\ &+ |Tx(t_2)| \int_{t_1}$$

 $+ 2\|T\|r_0\varepsilon Mm(r_0) + 2\|T\|r_0c\delta m(r_0)$

The last estimate gives

$$d(Hx) \le d(Tx) \int_0^{t_1} k(t_1, s) f(s, x(s)) ds$$

$$\leq d(Tx) \int_0^{t_1} |k(t_1,s)| \left| f(s,x(s)) \right| ds$$

$$\leq cm(r_0)M||T|| d(x)$$

Hence

$$d(HX) \le ||T||Mcm(r_0) d(X)$$
(8)

Combine (7) and (8) we get

 $\mu(HX) \leq ||T||Mcm(r_0)\mu(X)$

Using (vi), then we can apply Darbo fixed point theorem to complete the proof \blacksquare

In following we will investigate an example of equation (1)

Example 5. Consider the quadratic integral equation

$$x(t) = g(t) + x(t) \int_{0}^{t} k(t,s) f(s,x(s)), \ t \in I = [0,M]$$

In this example, comparing with equation (1), we get

(Tx)(t) = x(t) implies that T = I

For $\delta > 0$ assume that $||x - y|| < \delta$ and $x, y \in C(I)$ we have

$$|(Tx)(t) - (Ty)(t)| = |Ix(t) - Iy(t)| = |x(t) - y(t)| < \delta$$

This proves that the operator T is continuous.

Since

$$\|\|I\| = \sup_{x \neq 0} \frac{\|Ix\|}{\|x\|} = \frac{\|x\|}{\|x\|} = 1$$

So, T is bounded

For $X \subset C(I), x \in X$ and $|t_2 - t_1| < \delta, t_2, t_1 \in [0, M]$, such that $t_2 > t_1$ then we have:

$$|(Tx)(t_2) - (Tx)(t_1)| = |x(t_2) - x(t_1)| = \omega(Tx,\varepsilon)$$

$$\omega(Tx,\varepsilon) = \omega(x,\varepsilon)$$

$$\omega(TX) = \omega(X)$$

Also, we have:

$$d(Tx,\varepsilon) = |(Tx)(t_2) - (Tx)(t_1)| - [(Tx)(t_2) - (Tx)(t_1)]$$
$$= |x(t_2) - x(t_1)| - [x(t_2) - x(t_1)]$$

$= d(x,\varepsilon)$

Hence , the assumptions (ii) and (v) are satisfied. So, under the assumptions (i), (iii), (iv) and (vi) we can apply theorem 4 to get a continuous solutions for our integral equation of example $5 \blacksquare$

In the sequel, we will investigate the solvability of a fractional integral equation, which in the form

$$x(t) = g(t) + Tx(t) \int_{0}^{t} (t-s)^{\alpha-1} k(t,s) f(s,x(s)) ds, \ t \in [0,M] \ (9)$$

Where $0 < \alpha \leq 1$.

Theorem 6. Let the assumptions (i)-(v) of Theorem 4 and the assumption

(vi) inequality $||g|| + \frac{M^{\alpha}}{\alpha} ||T|| rcm(r) < r$ has a positive solution r_0 such that $M^{\alpha} ||T|| c m(r_0) < \alpha$,

be satisfied then the integral equation (9) has at least one continuous

solution .

Proof:

Define the operator H associated with the integral equation (9) by

$$(Hx)(t) = g(t) + Tx(t) \int_{0}^{t} (t-s)^{\alpha-1} k(t,s) f(s,x(s)) ds, \ t \in [o,M]$$

Using our assumption (i) - (iv), we can deduce that H is continuous.

Let $x \in C(I)$, $|t_2 - t_1| < \delta$ such that $\delta > 0$ and $t_2, t_1 \in I, t_2 \ge t_1$, as before we can see that:

 $|Hx(t_2) - Hx(t_1)| \le |g(t_2) - g(t_1)| +$

$$+|Tx(t_{2})|\int_{0}^{t_{2}}|(t_{2}-s)^{\alpha-1}||k(t_{2},s)-k(t_{1},s)||f(s,x(s))|ds + |Tx(t_{2})|\int_{0}^{t_{2}}|(t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha-1}||k(t_{1},s)||f(s,x(s))|ds + |Tx(t_{2})|\int_{t_{1}}^{t_{2}}|(t_{1}-s)^{\alpha-1}||k(t_{1},s)||f(s,x(s))|ds + |Tx(t_{2})-Tx(t_{1})|\int_{0}^{t_{1}}|(t_{1}-s)^{\alpha-1}||k(t_{1},s)||f(s,x(s))|ds$$
(10)
Using the mean value theorem for the function $(t-s)^{\alpha-1}$, we have

Using the mean value theorem for the function (t - s), we have

$$|Hx(t_2) - Hx(t_1)| \le \varepsilon_1 + ||T|| ||x|| \varepsilon_2 m(r) \left| \frac{t_2^{\alpha}}{\alpha} \right| +$$

+
$$||T|| ||x|| cm(r) \int_0^{t_2} |(t_2 - t_1)(\alpha - 1)(z - s)^{\alpha - 2}| ds$$

+
$$||T|| ||x|| cm(r) \left| \frac{(t_1 - t_2)^{\alpha}}{\alpha} \right| + ||T|| |x(t_2) - x(t_1) |cm(r)| \left| \frac{t_1^{\alpha}}{\alpha} \right|,$$

where $z \epsilon(t_1, t_2)$.

 $|Hx(t_2) - Hx(t_1)| < \varepsilon_1 + ||T|| r \varepsilon_2 m(r) \frac{t_2^{\alpha}}{\alpha} +$

$$+ \|T\| |rcm(r)|t_2 - t_1| [|z|^{\alpha - 1} - |z - t_2|^{\alpha - 1}] + \|T\| |rcm(r) \left| \frac{(t_1 - t_2)^{\alpha}}{\alpha} \right| + \\ + \|T\| |x(t_2) - x(t_1)| cm(r) \frac{t_1^{\alpha}}{\alpha} = \varepsilon$$

This means that the operator H maps C(I) into itself.

Next, for $x \in B_r$ and using the assumption (iii) and (iv) we have:

$$\begin{aligned} |Hx(t)| &\leq ||g|| + ||T|| ||x|| \int_0^t |t - s|^{\alpha - 1} |k(t, s)| |f(s, x(s))| \, ds \\ &\leq ||g|| + ||T|| r \, \frac{t^{\alpha}}{\alpha} \, c \, m(r) \\ &< ||g|| + ||T|| r \, \frac{M^{\alpha}}{\alpha} \, c \, m(r) \end{aligned}$$

Hence, the operator *H* transforms the ball B_{r_0} into itself such that there is a positive number r_0 with $M^{\alpha} ||T|| c m(r_0) < \alpha$.

Let

$$B_{r_0}^+ = \{ x \in B_{r_0} : x(t) \ge 0, t \in I \}$$

where $B_{r_0}^+$ is nonempty, bounded, closed and convex, as seen before

For a nonempty subset $X \subset B_{r_0}$, take an arbitrary function $x \in X$ and let

 t_2 , $t_1 \in I$, $t_2 > t_1$ choose $|t_2 - t_1| < \delta$ then, from (10) we will have:

$$|Hx(t_2) - Hx(t_1)| < |g(t_2) - g(t_1)| + ||T|| r_0 \varepsilon_2 m(r_0) \frac{t_2^{\alpha}}{\alpha} + \\ + ||T|| r_0 cm(r_0) |t_2 - t_1| [|z|^{\alpha - 1} - |z - t_2|^{\alpha - 1}] + \\ + ||T|| r_0 cm(r_0) \left| \frac{(t_1 - t_2)^{\alpha}}{\alpha} \right| + |Tx(t_2) - Tx(t_1)| cm(r_0) \frac{t_1^{\alpha}}{\alpha} \\ + \omega(Tx \ \varepsilon) cm(r_1) \frac{t_1^{\alpha}}{\alpha}$$

 $\leq \omega(g,\varepsilon) + \omega(Tx,\varepsilon)cm(r_0)\frac{t_1}{\alpha}^{\omega}$

Since g is continuous then $\omega(g, \varepsilon) \to 0$ as $|t_2 - t_1| \to 0$

So, we have

$$\omega(Hx,\varepsilon) < \omega(Tx,\varepsilon)cm(r_0)\frac{M^{\alpha}}{\alpha}$$
$$\leq ||T|| \ \omega(x,\varepsilon)m(r_0)\frac{M^{\alpha}}{c\alpha}$$

We obtain

$$\omega(HX) \le cm(r_0) \frac{M^{\alpha}}{\alpha} \|T\| \omega(X) \quad (11)$$

Now, let us take a nonempty set $X \subset B_{r_0}^+$ and choose $x \in X$, $t_2, t_1 \in I$, $t_1 \leq t_2$ such that $|t_2 - t_1| < \delta$ then we have as before:

$$|(Hx)(t_2) - (Hx)(t_1)| - [(Hx)(t_2) - (Hx)(t_1)] \le$$

$$\leq \{ |Tx(t_2) - Tx(t_1)| - |Tx(t_2) - Tx(t_1)| \}.$$

$$: \left[\int_0^{t_1} (t_1 - s)^{\alpha - 1} k(t_1, s) f(s, x(s)) ds \right] +$$

$$+ |Tx(t_2)| \int_0^{t_2} |(t_2 - s)^{\alpha - 1}| |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds +$$

$$+ |Tx(t_2)| \int_0^{t_2} |(t_2 - s)^{\alpha - 1} - (t_1 - s)^{\alpha - 1}| |k(t_1, s)| |f(s, x(s))| ds +$$

$$+ |Tx(t_2)| \int_{t_1}^{t_2} |(t_1 - s)^{\alpha - 1}| |k(t_2, s) - k(t_1, s)| |f(s, x(s))| ds +$$

$$+ |Tx(t_2)| \int_0^{t_2} |(t_2 - s)^{\alpha - 1} - (t_1 - s)^{\alpha - 1}| |k(t_1, s)| |f(s, x(s))| ds +$$

$$+ |Tx(t_2)| \int_0^{t_2} |(t_2 - s)^{\alpha - 1} - (t_1 - s)^{\alpha - 1}| |k(t_1, s)| |f(s, x(s))| ds +$$

$$+ |Tx(t_2)| \int_0^{t_2} |(t_1 - s)^{\alpha - 1}| |k(t_1, s)| |f(s, x(s))| ds$$

$$\leq \{ |Tx(t_2) - Tx(t_1)| - |Tx(t_2) - Tx(t_1)| \}$$

$$: \left[\int_0^{t_1} (t_1 - s)^{\alpha - 1} k(t_1, s) f(s, x(s)) ds \right] + 2 ||T| |r_0 \varepsilon_2 m(r_0) \frac{t_2^{\alpha}}{\alpha} +$$

$$+ 2 ||T| |r_0 cm(r_0)| t_2 - t_1| [|z|^{\alpha - 1} - |z - t_2|^{\alpha - 1}] +$$

$$+ 2 ||T| |r_0 cm(r_0) \left| \frac{(t_1 - t_2)^{\alpha}}{\alpha} \right|$$

$$\leq d(Tx) \left[\int_0^{t_1} (t_1 - s)^{\alpha - 1} k(t_1, s) f(s, x(s)) ds \right]$$

$$\leq d(Tx) \int_0^{t_1} |(t_1 - s)^{\alpha - 1}| |k(t_1, s)| \left| f(s, x(s)) \right| ds$$

So, we have

$$d(Hx) \le d(Tx \left| \frac{t_1^{\alpha}}{\alpha} c m(r_0) \right|)$$

$$d(HX) < c m(r_0) \frac{M^{\alpha}}{\alpha} ||T|| d(X)$$
(12)

Combine (11) &(12) we obtain

$$\mu(Hx) \le c m(r_0) \frac{M^{\alpha}}{\alpha} ||T|| \mu(x)$$

Applying Darbo fixed point theorem and using (vi) which proves that the equation (9) has at least one solution belonging to the space C(I)

References

- [1] J. Appell, P.P. Zabrejko, Nonlinear superposition operator, Cambridge Traces in Mathematics, Vol. 95, Camb. Univ. Press. Cambridge, 1990.
- J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lectures Notes in Pure and Applied Math., Vol. 60, Marcel Dekker, New York, (1980).
- [3] J. Banas, M. Lecko and W. G. El-Sayed, Existence theorems for some quadratic integral equations, J.Math. Anal. Appl. 222, (1998), 276-285.
- [4] J. Banas and L. Olszowy, Measures of noncompactness related to Monotonicity, Comment. Math. 41,13-23, (2001).

- [5] T. A. Burton, Volterra integral and differential equations, Academic Press. New York, (1983).
- [6] L. W. Busbridge, The mathematics of radiative transfer, Cambridge Univ. Press. Cambridge, England, 1960.
- [7] K. M. case and P. F. Zweifel, Linear transport theory, Addison-Wesley, Reading, MA 1967.
- [8] S. Chandrasekhar, Radiative transfer, Oxford Univ. Press. London, 1950.
- [9] G. Darbo, Punti uniti in transformazioni a condominio non compactto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84-92.
- [10] M.M. El Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equations of Volterra type, Int. J. Contemp.Math. Sci., Vol.2 (2007), 89-102.
- [11] A.M.A. El-Sayed, W.G. El-Sayed and O.L. Mustafa, On some fractional functional equations, PU.M.A. Bud. Univ. Hungary Vol. 6, No. 4, (1995), 321-337.
- [12] W.G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equations of Uryshon type, Comput. And Math. Appl. 51 (2006), 1065-1074.
- [13] C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. integral Eq. 4 (1980), 221-237.