International Journal on Recent Trends in Life Science and Mathematics (IJLSM) ISSN: 2349-7955
Volume: 2 Issue: 5 021 - 030

Continuous Solutions of a Quadratic Integral Equation

Mahmoud M. El-Borai, Wagdy G. El-Sayed and Amany M. Moter
Department of Mathematics, Faculty of Science, Alexandria University,
Alexandria — Egypt
m_m_elborai@yahoo.com, wagdy.goma@yahoo.com, aammmm_833@yahoo.co.uk

Abstract: An existence theorem for a quadratic integral equation is proved by using Darbo fixed point theorem via a measure of noncompact -ness.
The solution will be in the class C (l ) of continuous functions on the interval I = [0, M]. Finally, the existence of a fractional integral equation

will be investigated.
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1- Introduction. Due to the great importance of the integral equations for many scientific branches such as physics, engineering,
economics and biology [5,6,7,8], we discuss a certain kind of the class of integral equations, that is the class of the quadratic
integral equations, which take the form:

x(6) = g(©) + (TX)(©) [, k(t,$)f (s,x(s))ds, t €1 (1)

This kind of integral equations are inserted in the theories of radiative transfer and neutron transport and in the kinetic theory of
gases [6,13].

This equation is a general form of another equation that was investigated in [3, 10], another type of this equation was treated in the
class of monotonic functions [12] .

The goal of this paper is to prove the existence theorem of equation (1) in the class C (| ) of functions defined and continuous
on the interval I = [0, M].

2- Preliminaries. To perform our main theorem, first let E beaBanach space with a norm ||. || and 8 its zero vector. Denote by

B r the closed ball in E centered at 8 and its radius I .

The modulus of continuity w(x, €) of a function x € X, X is a nonempty bounded subset of the class C (l ) , &0 is defined as

[2]:

w(x, &) = sup{lx(t) —x($)|:t,seL|t—s| <&} (2)
From this definition, we can see that w(x, £) < &'if the function X (t ) is continuous on | .

Next, let us put
wo(X) = lin& sup{w(x, €): xeX}
E—

For our benefit, we can consider the case in which the Banach space E isthe space C (| ) , with standard norm

[x]| = max{|x(t)|: tel}
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Further, let us define the following quantities [12]:
d(x) = sup{ |x(s) — x(®)| — [x(s) — x(t) |:t,s € I, t < s},
and
d(X) =sup{d(x):x€X}
Notice that d(X) = 0 if and only if all functions belonging to X are nondecreasing on .
Now , let us define the function u by putting
1) = wo(X) + d(X).
It can be proved that the function u is a measure of noncompactness in the space C (1) [4].

Next, we will quote Darbo fixed point theorem [9]:

(3)

Theorem (1). Let Q be a nonempty, bounded, closed and convex subset of the Banach space E and et 4: Q->Qbea

continuous operator such that u(AX) < cu(X) for any nonempty subset X of Q, ce[0,1] is a constant, where p is a measure of

noncompactness, then A has at least one fixed pointin Q .

In the sequence, we will define the superposition operator

FO@®) = f(t,x(®) @
generated by the function

f=ftx):[01]XR—>R

and we have the following theorem [1]:

Theorem (2). The superposition operator F maps continuously the space C (| ) into itself iff f is continuous on I X R.

In the sequel, we define the linear integral operator

(Kx)(t) = ftk(t, s)x(s)ds, (5)

where
k=k(t,s):IxXI >R

and we will prove the following lemma:
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Lemma (3). If k = k(t,s):1 X I - R is continuous for both two variables t and S , then the linear operator K , defined by (5),
maps continuously the space C (| ) into itself.

Proof:

For ¢ > 0, assume that ||x — y|| < &, then we have
|(Kx) () = KD < [ 1kt )| 1x(s) = y()lds < & [;1k(t,s)| ds
since K (t ,S) is continuous on I x I, then it is bounded and so the continuity of K is proved.
Next, if x e C(I), then for ¢ > 0, such that |t, — t,| < &,t, > t; belongto I, we have

|(Kx)(t2) — (KO ()] < [21k(ta,5) — k(ty, 5)] |x(s)|ds + + [ 2k (1, 9)] 1x(s)lds

Due to the continuity of K and X , we deduce that Kx € C(I).

3- Main Result. This section is devoted to discuss the solvability of the integral equation (1) in the space C (| ) . For our
purposes, we assume that

Hx)(®) =g@®) + (Tx)(t) f k(t, S)f(s,x(s))ds, tel=[0M]
0

Then equation (1) becomes
x = Hx = g + (Tx)KF (x),

Where F is the superposition operator generated by the function f and K is the linear integral operator generated by the kernel
k(t,s) defined above by (4) and (5) respectively.

We will investigate the integral equation (1) under the following
assumptions:

(i the function g is a nondecreasing , nonnegative and continuous on [ ,
(i) the operator T: C(I) —» C(I) is a bounded linear operator
(iii) the function f = f(t,x(t)) :1 X R = R is continuous such that f : I X R , = R, and there is a function m: R, —
R,such that [f(t, x(t))| < m(|x|) fort €1,
(iv) k =k(t,s):1 xI — R, is continuous with respect to its both variables t and s such that k(¢t,s) < ¢,V t,s €1,
where c is positive constant ¢ > 0 and the linear integral operator K generated by k(t,s) maps R, into itself,
(v) d(Tx) < ||IT|| d(x) for any nonnegative function x € C(I) ,
(vi) The inequality
lgll + MIITllrem(r) <r

has a positive solution r, such that M||T||lc m(ry) <1

Now we can formulate the main existence theorem
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Theorem 4. If the assumptions (i) — (vi) are satisfied, then equation (1) has at least one solution x € C(I) .

Proof:
Using our assumptions (i) — (iv) and lemma 3, we can deduce that H is continuous.

Also, letx € C(I),|t, — t;] <&,suchthatd > 0andt,,t; €1,t, >t, ,we have:
(Hx)(t) = (HO)(E)] = 1g(t) = g(6) +  +Tx(ty) f;> k(e )f (5,2())ds — Tx(t) [y k(ty, s)f (s, x(s))ds |

< 1g(ts) — g(t)| + |Tx(ty) f; ket $)f (s, %(5))ds —

— Tx(t,) fotz k(ty, $)f (s,x(s))ds + Tx(t,) fotz k(ty, $)f (s, x(s))ds — — Tx(t,) fotl k(ty, s)f (s, x(s))ds +
Tx(22)0¢t14t1,s/5,x5d5—

— Tx(t;) fotlk(tl,s)f(s,x(s))ds |
< lg(t2) = gt + ITx(t)] f;*1k(tz, 5) = k(ty, )| |f (5,x(5))| ds +
+1Tx(e)] [ 21t ) |f (5, %(5))] ds +

+ITx(ty) — Tx(t)] [ k(ty, )1 |f(s,x(s))| ds (6)
< g + ||ITIrM e;m(r) + ||T||réem(r) + |IT|||x(t,) — x(t) |Mcm(r)
Where |g(t;) — g(t1)| < &1 |k(ty,s) — k(ty, )] < &
The last estimate yields that the operator H maps C (1) into itself.

Next, For x € B, and using the assumption (iii), (vi) and Lemma 3 we have:
[Hx(©)] < g1 + 1Tx ()] [kt )I|f (5, x(5))|ds

< llgll + Tl fotlk(t, )I|f (s, x(s))|ds

<llgll + MlITllrem(r) <r
Hence, there is a positive number r, with M||T||c m(r,) < 1 such that the operator H transforms the ball B, into itself.
Let

Bf ={x€ B,:x(t) 20,t €1}
Note that, B;; is nonempty, bounded, closed and convex subset of B, (see [11]).

Furthermore, for a nonempty subset X c B! , take a function x € X and for § > 0, let [t, — t;| <&, ty,t, € I,t; > t;, then we
have (using inequality (6) and our assumptions):

[(Hx)(t;) — (Hx)(t)] < w(g,€) + ITllroeMm(ry) +
+|Tllrocdm(rp) + [Tx(tz) — Tx(ty)|Mcm(rp)
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< w(g, &) + ITlireMm(ry) + |ITllrocdm(ro) + T llw (x, € )M m(rp).
As g — 0, since g is continuous, we obtain

w(HX) < IT[|Mcm(rp)w(X )

Finally, choose x € X and t,,t; € I ,t, > t; such that (t, — t;) < & then we have :

|(H)(t5) = (Hx) (t2)] = [(Hx) (t) — (Hx)(£)] =

= 1g(tz) — g(&) + Tx(t;) [} k(t, $)f (5,x(s))ds —

= Tx(ty) fy kty, $)f (5, %())ds| — [g(t2) = g(t) +
+ Tx(ty) 2kt $)f (5,x(5))ds — Ta(ty) [, k(ty, s)f (s, x(s))ds]
< 1g(t) — gt - [g(t) — g(t) ]+

+ |Tx(t2) fotz k(ty, $)f (s,x(s))ds — Tx(t,) fotl k(t,, s)f(s,x(s))ds| -

ts t
- [Tx(tz)f k(t,$)f (s, x(s))ds — Tx(tl)f k(ty,$)f (s,x(s))ds] < |g(tz) — g(e)I-[g(t) — g(t) 1+
0 0

HTx(t)] [ 21k (ty, 5) = k(ty, )| | (5,2(5))|ds +
+ IT(t)] J 2ty SI|f(5,%())|ds +
HITx(t) — Tx(e)| f, k(e )1 (s, x(s))|ds —
[=Tx(t)] [, [k(t,s) — k(ty, $)] f(5,x(s))ds —
— [Tx(e)] [ ey, ) (5, %())ds —
—[Tx(t;) — Tx(t)] ;" k(t1, )f (5, x(s))ds)
< {ITx(t;) = Tx(ty)] = [Tx(t) = Tx(e)} [ J; k(ty, ) f (5, x(s))ds | +
HITx(E)] 21k (ts, 5) — k(ts, )] [ (5,2(5))|ds +
+ ITx(e)] [P 1k ey, )1 F (5,2 () |ds +
HITx ()] [, 71k (ts, s) — k(ty, )I|f (s,2(5)) |ds +

+Tx(e)] 71k (1, | f (5,2())|ds

< (ITx(,) — Tx(t)] = [Tx(6) — Tx ()T} [ k(b $)f (5,%(s) ) ds]+

+ 2||T||roeMm(ry) + 2||T||rocdm(ry)

The last estimate gives
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d(Hx) < d(Tx) [, k(ty, s)f (s, x(s))ds

< d(Tx) fotllk(tl,s)l |f(s,x(s))| ds
< ecm(rg)M||T|| d(x)

Hence

d(HX) < ||IT||Mcm(ry) d(X) 8)
Combine (7) and (8) we get

n(HX) < [ITlIMcm(ro)u(X)
Using (vi), then we can apply Darbo fixed point theorem to complete the proof m
In following we will investigate an example of equation (1)
Example 5. Consider the quadratic integral equation
t
x(t) =g(t) + x(t)fk(t,s)f(s,x(s)), tel=[0,M]
0
In this example, comparing with equation (1), we get
(Tx)(t) = x(t) impliesthat T =1
For § > 0 assume that ||x — y|| < Sandx,y € C(I) we have
|(Tx)() = (Ty)(®O)] = [Ix(¢) =Ty(@®)] = [x(t) — y(®O)| < &
This proves that the operator T is continuous.
Since
Il = Supswo 1y = 11 =

So, T is bounded
ForX c C(I),x € Xand |t, — t;| < &,t,,t; € [0,M], such that t, > t, then we have:
|(Tx)(t;) — (Tx)(t)] = [x(t2) — x(t:1)| = w(Tx, )

w(Tx,€) = w(x, &)

w(TX) = w(X)
Also, we have:
d(Tx,€) = [(Tx)(t2) — (Tx)(t)| = [(Tx)(tz) — (Tx)(t1)]

= |x(t2) — x(t)| = [x(t2) — x(t1)]
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=d(x,¢€)

Hence , the assumptions (ii) and (v) are satisfied. So, under the assumptions (i), (iii), (iv) and (vi) we can apply theorem 4 to get a
continuous solutions for our integral equation of example 5m

In the sequel, we will investigate the solvability of a fractional integral equation, which in the form

x(t) = g(t) + Tx(t) f(t =) k(t,s)f (s, x(s))ds, t € [0,M](9)

Where 0 < a < 1.
Theorem 6. Let the assumptions (i)-(v) of Theorem 4 and the assumption
(vi) inequality ||g|l + M; [IT||rem(r) < r has a positive solution r, such that M¥||T||c m(r,) < «,

be satisfied then the integral equation (9) has at least one continuous

solution .

Proof:

Define the operator H associated with the integral equation (9) by

t
(Hx)(t) = g(t) + Tx(t) f(t —5)* 1k(t, s)f(s,x(s))ds, t € [o,M]
0

Using our assumption (i) — (iv), we can deduce that H is continuous.

Letx € C(I),|t, — t;| < & suchthat 6 > 0and t,,t, €1,t, > t,, as before we can see that:
|Hx(t;) — Hx(t)] < |g(t;) — g(t)| +

+|Tx(t,)] fotzl(t2 — ) 7 |k(ty, s) — k(ty, I|f (s, x(s))|ds +

+|Tx(E)] [21Ct, = )% = (6 — )% [k(ty, )| F (5, 2(5)) |ds +

+ T2 ()] J21(t — ) et )| (5,2()) |ds +

+ |Tx(t;) = Tx(t)] [, 1t — )97 [k(ty, $)I|f (5, x(5)) |ds (10)

Using the mean value theorem for the function (¢t — s)*~1, we have

t,*
=l
a

|Hx(t2) — Hx(t)] < & + |ITllllx]|e;m(r)

+ITlxllem(r) [21(t, = 6)(a@ = 1)(z — 5)* 2| ds

+ITlxllem(r)

CED | Tl () — x(t)lem(r)

t*
a

’

where ze(ty, t,).
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|Hx(t;) — Hx(t)] < & + |Tlire;m(r) 2+

(t1-t2)%
a

HITllrem@)t; — t1l[ 12197t = 1z — £,1*7 ] + I Tllrem(r)

+

a

+ITllx(e,) —x(tl)lcm(r)% _ .

This means that the operator H maps C (1) into itself .

Next, for x € B, and using the assumption (iii) and (iv) we have:
[Hx(®] < llgll + ITNxll f It = 519 |kt $)I1£ (s, x())| ds
< ligl+ITllr = cm(r)

< llgll + Il = ¢ m(r)
Hence, the operator H transforms the ball B, into itself such that there is a positive number r, with M*||T|[c m(rp) < «.
Let
B ={x€ B, :x(t)=20,t €}
where B/ is nonempty, bounded, closed and convex, as seen before
For a nonempty subset X c B, , take an arbitrary function x € X and let

t,,t; €1,t, > t, choose |t, — t;| < & then, from (10) we will have:

|Hx(t;) — Hx(t)] < |g(tz) — g(t)] + ||T||ro€zm(ro)%+

+ITliroem@lt; — tll1z|*™t — |z — &, *7 ] +

+ [ITllroem(ro)

(t1 atZ) | + |Tx(t2) - Tx(t1)|Cm(T0)%

< w(g, &) + w(Tx, s)cm(ro)%

Since g is continuous then w(g,&) » 0as |t, —t;| = 0

So, we have
Mll
w(Hx, &) < w(Tx, s)cm(rg)T
M(l
< ITI (e, & )m(ry)
We obtain
Mll
w(HX) < em(r) —ITlw(X) (11)
Now, let us take a nonempty set X c B and choose x € X, t,,t; € I, t; < t, suchthat |t, — t;| < & then we have as before:

|(Hx) (t2) — (Hx)(t)] = [(Hx)(t;) — (Hx)(t1)] <
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< {Tx(ty) — Tx(ty)| — [Tx(t;) — Tx(t)]}
S = ) k(ty, $)f (5, %(s))ds] +

+ |Tx(t,)] fotzl(t2 —5)* Y |k(ty, s) — k(tl,s)||f(s,x(s))|ds +
+ITx ()] f,71(t — )% = (ty — )% k(e I|f (5,%(s))|ds +
+Tx(e)] [ 71t = )% eCer, $)I|f (s, %(5)) |ds +
+|Tx(t,)| fotzl(t2 —5)* Y |k(ty, s) — k(tl,s)||f(s,x(s))|ds +
+ITx(E)] [}21(t, — )% = (ty — )% k(e $)I|F (5, %(5)) |ds +
+1Tx(e)] [ 21CE = )97 ey, $)I]f (5, x(5)) |ds

< {(ITx(t,) — Tx(t,)| — [Tx(t;) — Tx(t)]}

I = )%k, 9)f (5, x())ds| + 2IITlIroe;m(r) 2+
+ 2| Tliroem(ro)lt, — il 12197 — |z — t,]% ]+

+ 2|[Tllrocm ()

(tl-fz)a|
a

< d(Tx) [fotl(t1 —s)et k(tl,s)f(s,x(s))ds]

IA

d(Tx) |f0t1(t1 —s)et k(tl,s)f(s,x(s))ds|

< d(Tx) [,*1(ty — )% Mk (ty, )| |f(5,%(s))| ds

So, we have

d( Hx) < d(Tx

2 m(rny)|)

d(HX) < cm(r) ITI A (12)

Combine (11) &(12) we obtain

p(Hx) < cm(ro)M;“IITII p(x)

Applying Darbo fixed point theorem and using (vi) which proves that the equation (9) has at least one solution belonging to the

space C(I)m
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