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Abstract:- 

 
Effective control of influenza pandemic is an important public health goal. Number of recent studies, have shown that 

how different intervention measures allow to control the number of clinical cases of influenza. Here we introduce optimal control 

strategies and their impact on disease control and also investigate the necessary conditions for the control of disease. Further we 

try to evolve optimal control policies to reduce the susceptible that are at risk and clinically ill and infectious cases by introducing 

four control strategies at a minimal cost. We use Pontryagin’s Maximum Principle of optimal control theory. Simulations are 

carried out using fourth order Runge-Kutta forward-backward scheme. We evaluated the potential effect of control measures such 

as non-pharmaceutical intervention, antiviral treatment and vaccination effect on the disease dynamics.
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I. Introduction 

Emerging influenza is a seasonal viral disease caused 

by influenza A virus (H1N1). It spreads rapidly and costs 

society a considerable amount in terms of health care 

expenses, reduction in productivity as well as loss of life. 

The World Health Organization (WHO) has declared the 

outbreak to be a pandemic because of growing worldwide 

cases [1]. It cost the society a huge amount in terms of 

morbidity and mortality and monetary cost as well with a 

typical flu pandemic. The existence of influenza virus 

among human population in many countries of the world 

including India has emphasized public health care 

organizations to take effective preventive measure. 

However, there are situations where, in spite of the 

medical care available to infected cases, diseases may 

spread sporadically in no time and situation may go beyond 

our control of medical care. Such situations can be perfectly 

controlled by introducing initial preventive measure such as 

Non Pharmaceutical Interventions (NPIs) specifically by 

keeping all mediating agencies away from contact [2]. NPIs 

include social distancing, quarantine, school closure, mask 

wearing etc. These measures may play an important role 

when effective vaccine and anti-viral drugs may not be 

available for the general population at the start of the 

pandemic disease. The use of such NPIs were applied during 

the 1918 pandemic and for Severe Acute Respiratory 

Syndrome (SARS) and also recently during 2009-10 H1N1 

pandemic.  

   In India   there were 31,924 laboratory-confirmed 

cases and 1,525 deaths were reported, i.e. 4.78% of the cases 

tested positive for H1N1 influenza virus [3]. In this situation 

vaccination is the most effective means of pandemic 

mitigation. In the last decade, various studies have been 

carried out concerning the pandemic influenza [4]; their 

study explores the impact of immunization with a partially 

effective vaccine on the transmission dynamics of influenza 

infection. In many situations   such  vaccine programs do 

well  to stop  the spread of infection and determines the 

minimal vaccine efficacy and vaccination rate required to 

control or eradicate infection in a population. Recently, an 

economic analysis of influenza vaccination and anti-

retroviral treatment for healthy working adults has been 

carried out and found that the controls: Vaccination and 

treatment are two elements of the international strategy to 

prevent a pandemic [5]. Also it has been shown to be most 

effective as a public health measures to curtail the disease 

outbreak. Such models are suitable for developed countries 

as they capable to adapt vaccination programs as they can 

meet the cost, material and manpower. But for developing 

countries are concerned very few people may get vaccinated 

and very few may be accessible to the medical care as they 

unable to afford the cost. Further, it may be difficult also if 

they may not have access to treatment and health services 

because of poor resource settings. In view of these 

problems, it is better to introduce the combination of these 

vaccination and treatment strategies along with non 

pharmaceutical intervention control to curtail the spread of 

epidemic, where the social distancing, household quarantine 

and mask wearing can be offered and can be hoped for the 

control of spread of a disease to extinct. 

                  In this paper we introduce appropriate optimal 

control measures and their impact on disease control and 

also investigate the necessary conditions for the control of 

disease. After introduction in Section-1, we try to evolve an 

optimal disease control policy to reduce the susceptible that 

are at risk and clinically ill and infectious cases by 

introducing four control strategies in Section -2 and derive a 

control model consisting of non-linear differential equations 

which describe the dynamics of influenza model. Section 3 

deals with derivation of optimal control policies using 

Pontryagin’s Maximum principle and determines the 

necessary conditions for the optimal of the disease. In 

section 4 we discussed the theorem on existence of optimal 

control policy. In section 5 we discuss the results of 

numerical simulations and the final section give summary 

and conclusions of the paper. 



International Journal on Recent Trends in Life Science and Mathematics (IJLSM)                  ISSN: 2349-7955 

Volume: 2 Issue: 5                                                                                                                                                                            001 – 007 

_______________________________________________________________________________________________ 

2 
IJLSM | May 2015, Available @ http://www.ijlsm.org                                                                 

_______________________________________________________________________________________ 

 

II. Optimal Control Model 

The optimal control of influenza model with four 

control strategies is given by the following nonlinear 

differential equations[6]. 

𝑆  𝑡 = 𝜔𝑉 𝑡 + 𝜌𝑅 𝑡 −
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑁(𝑡)

−  𝜙 + 𝜀2𝑢2 𝑡  𝑆(𝑡) 

𝐸  𝑡 =  
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑁(𝑡)
−  𝑘𝐸(𝑡) 

𝑉  𝑡 =  𝜙 + 𝜀2𝑢2 𝑡  𝑆 𝑡 − 𝜔𝑉(𝑡)                                                                                     

(1) 

𝐼  𝑡 = 𝜅𝐸 𝑡 −  𝛾1 + 𝛼 + 𝛿 + 𝜀3𝑢3 𝑡  𝐼(𝑡) 

𝑇  𝑡 =  𝛼 𝐼 𝑡 −  𝛾2 +  1 − 𝜃 𝛿 + 𝜀4𝑢4 𝑡  𝑇(𝑡) 

𝑅  𝑡 =  𝛾1𝐼 𝑡 + 𝛾2𝑇 𝑡 + 𝜀3𝑢3(𝑡)𝐼 𝑡 + 𝜀4𝑢4(𝑡)𝑇 𝑡 
− 𝜌𝑅(𝑡) 

𝐷  𝑡 = 𝛿𝐼 𝑡 +  1 − 𝜃 𝛿𝑇(𝑡) 

 

with initial conditions,                                                                                                           

        

    𝑆 0 = 𝑆0 ,    𝑉 0 =  𝑉0  , 𝐸 0 = 𝐸0  , 𝐼 0 =
𝐼0 ,    𝑇 0 =  𝑇0 ,    𝑅 0 =  𝑅0 , 𝐷 0 =  𝐷0  and  

𝑁 𝑡 = 𝑆 𝑡 + 𝐸 𝑡 + 𝑉 𝑡 + 𝐼 𝑡 + 𝑇 𝑡 + 𝑅 𝑡 + 𝐷(𝑡)  

where  𝑁 𝑡  is the total population at time 𝑡. 

Variables and Parameters 

Variable/parameter   explanation  

S    Susceptible Individuals 

E    Exposed Individuals 

V    Vaccinated individuals 

I    Infected and Infectious 

Individuals 

T    Treated Individuals 

R    Recovered Individuals 

D    Disease Induced Deaths 

N    Total population 

𝑁 = 𝑆 + 𝐸 + 𝑉 + 𝐼 + 𝑇 + 𝑅 + 𝐷 

𝜙         Rate at which 

susceptible are vaccinated 

𝛽          Per capita transmission 

rate 

𝑘                                               Rate of progression 

from exposed class to                                                                 

    infectious class 

𝛾1    Rate of recovery of 

infectious individuals 

𝛾2    Recovery rate due to 

treatment 

𝛿    Disease induced death 

rate 

𝜌    Rate of immunity loss of 

recovered individuals 

𝛼    Rate at which clinically 

infectious individuals hospitalized for   

    treatment 

𝜃    Effectiveness of the 

drug as a reduction factor in disease induced  

    death of infectious 

individuals (0 < 𝜃 ≤ 1). 

𝜔    Vaccine based immunity 

wanes. 

 

III. Analysis of optimal control 

 Optimal control theory has been used successfully 

in many situations to make decisions involving biological or 

medical models. In developing response plans for disease 

outbreaks, decision makers seek optimal responses that can 

minimize the incidence cases and disease related deaths 

along with the cost of each mitigation strategy. Here the 

control theory is used to explore the impact of both non 

pharmaceutical intervention and vaccination control for the 

susceptible that are at risk and also antiviral treatment 

control for clinically infectious and hospitalized individuals. 

The control theoretic approach assigns costs to both 

interventions and infection and looks for a policy that can 

minimize the total combined cost. The control strategies are 

modeled by the functions 𝑢𝑖 𝑡  (𝑖 = 1,2,3,4) that externally 

control the number of susceptible, clinically infectious and 

hospitalized individuals over a finite time interval. 

We use the following Controls variables:  

Control 𝑢1 𝑡  as a successful practice of non-

pharmaceutical interventions to susceptible (𝜀1𝑆(𝑡)) to 

protect themselves from attack of the disease; 𝜀1 measures 

the effectiveness of 𝑢1 𝑡 , 𝜀1 𝜖  0,1 ). Control  𝑢2 𝑡  
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represents the controlling effort that alters the fraction of 

susceptible individuals (𝜀2𝑆(𝑡)) receiving vaccination per 

unit of time, and hence limiting the rate of infection; 𝜀2 

measures the effectiveness of 𝑢2(𝑡)(𝜀2 𝜖  0,1 ). The 

Control 𝑢3 𝑡  alters the fraction of clinically infectious 

cases (𝜀3𝐼(𝑡)) receiving anti-virals per unit time; 𝜀3 

measures the effectiveness of  𝑢3(𝑡)(𝜀3 𝜖  0,1 ) and the 

Control 𝑢4 𝑡  alters the fraction of hospitalized individuals 

(𝜀4𝑇(𝑡)) gettting antiviral treatment per unit of time; 𝜀4 

measures the effectiveness of 𝑢4(𝑡)(𝜀4 𝜖  0,1 ). 

The control problem involves an objective 

functional 𝐽 that formulates the optimization problem of 

interest, namely that of identifying the most effective 

strategies. Our objective involves minimizing the number of 

individuals with flu as well as the costs for applying non 

pharmaceutical intervention and vaccination controls for the 

susceptible that are at risk and also antiviral treatment 

control for clinically ill, infectious and hospitalized 

individuals. The controls 𝑢1(𝑡),  𝑢2(𝑡),  𝑢3(𝑡) 𝑎𝑛𝑑  𝑢4(𝑡) are 

minimized subject to differential equations (1) which are 

nonlinear and complex, unable to find an analytical solution. 

The objective functional  𝐽 is given by  

𝐽 𝑢1, 𝑢2, 𝑢3, 𝑢4  =

 [𝐴𝐼 t + 𝐵𝑇(𝑡) +
𝑊1

2
𝑢1

2 𝑡 +
𝑡𝑓

0

𝑊2

2
𝑢2

2 𝑡 +
𝑊3

2
𝑢3

2 𝑡 +
𝑊4

2
𝑢4

2 𝑡 ]𝑑𝑡       (2) 

 

where 𝑡𝑓  is the final time and the co-efficient  

𝐴, 𝐵, 𝐶,𝑊1  , 𝑊2  , 𝑊3  ,𝑊4 are balancing cost factors. A 

quadratic function is implemented for measuring the control 

cost. Optimal control problem is to find an optimal functions 

𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗  𝑎𝑛𝑑 𝑢4

∗   such that  

  

            𝐽 𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗ , 𝑢4

∗ =
min𝑈 𝐽 𝑢1(t), 𝑢2(t), 𝑢3(t), 𝑢4(t)      

       (3)     

 

Subject to system (1), where the control set is defined as  

 

 𝑈 = { 𝑢1(t), 𝑢2(t), 𝑢3(t), 𝑢4(t)  are measurable, 0

≤ ( 𝑢1 t , 𝑢2 t , 𝑢3 t , 𝑢4 t  ≤  1} 

 

IV. Existence of control problem 

 In this section, we consider the control system (1) 

with initial conditions to show the existence of the control 

problem. Note that for the bounded lebesgue measurable 

controls and non-negative initial conditions, non-negative 

bounded solutions to the state system exists [7]. In order to 

find an optimal solution, first we should find the Lagrangian 

and Hamiltonian for the optimal control problem. The 

minimal value of the Lagragian is given by 

𝐿 = 𝐴𝐼 𝑡 + 𝐵𝑇 𝑡 +
1

2
(𝑊1𝑢1

2 + 𝑊2𝑢2
2 + 𝑊3𝑢3

2 + 𝑊4𝑢4
2) 

We define the Hamiltonian 𝐻 for the control problem, where 

𝜆1, 𝜆2, 𝜆3 , 𝜆4, 𝜆5,   𝑎𝑛𝑑 𝜆6 are adjoint variables: 

                𝐻 = 𝐴𝐼 𝑡 + 𝐵𝑇(𝑡) +
𝑊1

2
𝑢1

2 𝑡  
𝑊2

2
𝑢2

2 𝑡 

+
𝑊3

2
𝑢3

2 𝑡 +
𝑊4

2
𝑢4

2 𝑡     

 +𝜆1  𝜔𝑉 𝑡 + 𝜌𝑅 𝑡 −
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑁 𝑡 

−  𝜙 + 𝜀2𝑢2 𝑡  𝑆 𝑡      

                +𝜆2  
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑁 𝑡 

−  𝑘𝐸 𝑡                     

             

+𝜆3[ 𝜙 + 𝜀2 𝑢2 𝑡  𝑆 𝑡 −

𝜔𝑉 𝑡                                                                                                                

                  +𝜆4[𝜅𝐸 𝑡 −  𝛾1 + 𝛼 + 𝛿 + 𝜀3𝑢3 𝑡  𝐼(𝑡)]                                 

                   +𝜆5[ 𝛼𝐼 𝑡 −  𝛾2 +  1 − 𝜃 𝛿 + 𝜀4𝑢4 𝑡  𝑇 𝑡 ] 

                   +𝜆6[𝛾1𝐼 𝑡 + 𝛾2𝑇 𝑡 + 𝜀3𝑢3 𝑡 𝐼 𝑡 +
𝜀4𝑢4 𝑡 𝑇 𝑡 − 𝜌𝑅 𝑡 ]   (4) 

For the existence of our control system (1), we state and 

prove the following theorem. 

Theorem 4.1  There exists an optimal control 𝑢∗ =
 𝑢1

∗ , 𝑢2
∗  , 𝑢3

∗ , 𝑢4
∗ ∈ 𝑈 such that  

𝐽 𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗ , 𝑢4

∗ = 𝑚𝑖𝑛
𝑈

𝐽 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)   

Subject to the control system (1) with the initial conditions. 

Proof: to prove the existence of an optimal control we use 

the result in [8] [9]. Here the control and state variables 

are non-negative values. In this minimizing problem, the 

necessary convexity of the objective functional in 

𝑢1, 𝑢2 , 𝑢3 𝑎𝑛𝑑 𝑢4 are satisfied. The set of all the control 

variables (𝑢1, 𝑢2, 𝑢3 , 𝑢4)  ∈ 𝑈 is also convex and closed by 

definition. The optimal system is bounded which determines 

the compactness needed for the existence of an optimal 

control. In addition the integrand in the functional (2), 

𝐴𝐼 𝑡 + 𝐵𝑇(𝑡)
1

2
(𝑊1𝑢1

2 𝑡 + 𝑊2𝑢2
2(𝑡) + 𝑊3𝑢3

2 𝑡 +

𝑊4𝑢4
2 𝑡 ) is convex on the control set U. Also we can see 

that, there exists a constant 𝜌 > 1 and positive numbers 

𝜔1, 𝜔2 such that  

𝑱(𝑢1, 𝑢2, 𝑢3 , 𝑢4) ≥  𝑐1 ( 𝑢1 
2 +  𝑢2 

2 +  𝑢3 
2 +  𝑢4 

2)𝜌/2

−𝜔2 

Because, the state variables are bounded, this completes the 

existence of optimal control. 
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 In order to derive the necessary conditions, we use 

Pontryagin’s Maximum Principle as follows. If (𝑥, 𝑢) is an 

optimal solution of an optimal control problem, then there 

exists a non trivial vector function 𝜆 = (𝜆1, 𝜆2 , … , 𝜆3) 

satisfying the following equations: 

𝑑𝑥

𝑑𝑡
=  

𝜕𝐻(𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝜆
 , 

                                                      0

=  
𝜕𝐻(𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑢
 ,                                             (5)       

𝑑𝜆

𝑑𝑡
=

𝜕𝐻 𝑡, 𝑥, 𝑢, 𝜆 

𝜕𝑥
 . 

We now derive the necessary conditions that optimal control 

functions and corresponding states must satisfy.The 

following theorem , we present the adjoin system and 

control characterization. 

Theorem 4.2   Let 𝑆∗, 𝐸∗, 𝑉∗, 𝐼∗, 𝑇∗  𝑎𝑛𝑑 𝑅∗  be optimal state 

with associated optimal control variables  

(𝑢1
∗(𝑡) , 𝑢2

∗(𝑡), 𝑢3
∗(𝑡) , 𝑢4

∗(𝑡)) respectively for the optimal 

control problem. Then there exist adjoint variables  

𝜆𝑖 𝑡 (𝑖 = 1,2,3,4,5,6) satisfying 

𝜆 1 𝑡 =  𝜆1 𝑡 − 𝜆2(𝑡) 
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡   𝐼 𝑡 + 𝑇 𝑡  

𝑁 𝑡 

+  𝜆1 𝑡 − 𝜆3 𝑡  (𝜙 + 𝜀2𝑢2 𝑡 )  

𝜆 2 𝑡 = ((𝜆2 𝑡 − 𝜆4 𝑡 )𝑘 

𝜆 3 𝑡 =   𝜆1 𝑡 − 𝜆3(𝑡)  𝜔   

     

𝜆 4 𝑡 =  −𝐴 +  𝜆1 𝑡 − 𝜆2 𝑡  
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡 

𝑁 𝑡 

+ 𝜆4 𝑡  𝛾1 + 𝛼 + 𝛿 + 𝜀3𝑢3 𝑡   

                  −𝜆5𝛼 − 𝜆6(𝛾1 +  𝜀3𝑢3 𝑡 )  

  

𝜆 5 𝑡 =   𝜆1 𝑡 − 𝜆2 𝑡  
𝛽 1 − 𝜀1𝑢1 𝑡  𝑆 𝑡 

𝑁 𝑡 

+ 𝜆5 𝑡  𝛾2 +  1 − 𝜃 𝛿 + 𝜀4𝑢4 𝑡   

                −𝜆6 𝑡 (𝛾2 +  𝜀4𝑢4(𝑡) 

𝜆 6 𝑡 =  (𝜆1 𝑡 − 𝜆6(𝑡))𝜌    

     (6) 

With transversality conditions, 

𝜆1 𝑡𝑓 = 𝜆2 𝑡𝑓 = 𝜆3 𝑡𝑓 = 𝜆4 𝑡𝑓 = 𝜆5 𝑡𝑓 = 𝜆6 𝑡𝑓 = 0

                 (7) 

Furthermore the control functions 𝑢1
∗ 𝑡 , 𝑢2

∗ 𝑡 , 𝑢3
∗ 𝑡 ,

𝑎𝑛𝑑 𝑢4
∗(𝑡) are given by, 

𝑢1
∗ 𝑡 

=  min max  0,
 𝜆2 𝑡 − 𝜆1 𝑡  𝛽𝜀1𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑊1𝑁 𝑡 
 , 1  

𝑢2
∗ 𝑡 

=  min  max  0,
( 𝜆1 𝑡 − 𝜆3 𝑡  𝜀2𝑆 𝑡 

𝑊2
 , 1                           

                            𝑢3
∗ 𝑡 =

 max  0,
 𝜆4 𝑡 −𝜆6 𝑡  𝜀3𝐼 𝑡 

𝑊3
  , 1                                                           (8)         

                         

       𝑢4
∗ 𝑡 

=  min  max  0,
( 𝜆5 𝑡 − 𝜆6 𝑡  𝜀4𝑇 𝑡 

𝑊4
  , 1                                

Proof:  To determine the ad joint equations and the 

transversality conditions, we use the Hamiltonian H in 

equation (4). The form of the adjoint equations and 

transversality conditions are standard results from 

Pontryagin’s Maximum Principle. We differentiate the 

Hamiltonian with respect to each state (respectively as 

stated above),  then the adjoint system can be written as:  

  

𝜆 1 𝑡 =  −
𝜕𝐻

𝜕𝑆
  ,   𝜆 2 𝑡 =  −

𝜕𝐻

𝜕𝐸
  ,    𝜆 3 𝑡 =  −

𝜕𝐻

𝜕𝑉
 ,   

𝜆 4 𝑡 = −
𝜕𝐻

𝜕𝐼   
,   𝜆 5 𝑡 =  −

𝜕𝐻

𝜕𝑇  
, 

  𝜆 6 𝑡 =  −
𝜕𝐻

𝜕𝑅
 

With transversality conditions, 

𝜆1 𝑡𝑓 = 𝜆2 𝑡𝑓 =  𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 𝜆5(𝑡𝑓) = 𝜆6(𝑡𝑓) = 0 

To get the characterization of the optimal control we have to 

solve the equations, 

𝜕𝐻

𝜕𝑢1(𝑡)
= 0,            

𝜕𝐻

𝜕𝑢2(𝑡)
= 0,      

𝜕𝐻

𝜕𝑢3(𝑡)
= 0  & 

𝜕𝐻

𝜕𝑢4(𝑡)
= 0                    

 for  𝑢1
∗ 𝑡 , 𝑢2

∗ 𝑡 , 𝑢3
∗ 𝑡  & 𝑢4

∗ 𝑡  subject to the constraints, 

the characterization (8) can be derived and we have 

𝜕𝐻

𝜕𝑢1(𝑡)
=  𝑊1𝑢1 𝑡 −

 𝜆2 𝑡 − 𝜆1 𝑡  𝛽𝜀1𝑆 𝑡  𝐼 𝑡 + 𝑇 𝑡  

𝑁 𝑡 

= 0                      

𝜕𝐻

𝜕𝑢2(𝑡)
=  𝑊2𝑢2 𝑡 −  𝜆1 𝑡 − 𝜆3 𝑡  𝜀3𝑆 𝑡 

= 0                                                

          
𝜕𝐻

𝜕𝑢3(𝑡)
=  𝑊3𝑢3 𝑡 −  𝜆4 𝑡 − 𝜆6 𝑡  𝜀3𝐼 𝑡 

= 0                                                            
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𝜕𝐻

     𝜕𝑢4(𝑡)
=  𝑊4𝑢4 𝑡 −  𝜆5 𝑡 − 𝜆6 𝑡  𝜀4𝑇 𝑡 

= 0                                                            

Then by standard variation arguments with the control 

bounds, we obtain the properties (8) 

Table 1. Description of parameter values in the optimal 

control simulation 

 

Parameter 

 

Baseline value Reference 

𝛿 0.01 Assumed 

𝛽 1.5 Chowell et al. 

(2010) 

𝑘 1.75 Assumed 

𝛾1 0.34 Chowell et al. 

(2010) 

𝛾2 0.34 Assumed 

𝜌 0.02 Chowell et al. 

(2010) 

𝛼 0.54 Assumed 

𝜖1 0.5 Chowell et al. 

(2010) 

𝜖2 0.5 Assumed 

𝜖3 0.5 Assumed 

𝜖4 0.5 Assumed 

𝜃 0.5 Assumed 

∅ 1 Assumed 

 

V. Numerical Illustrations: 

 

Numerical solutions to the optimality system comprising of 

the state Eq.(1) and adjoint Eq.(6)  are carried out using Mat 

Lab  using parameters from the above Table together with 

the following weight factors and initial conditions: 𝐴 =
1, 𝐵 = 1,𝑊1 = 25,𝑊2 = 25,𝑊3 = 25,𝑊4 = 25, 𝑆 0 =
1,00,000, 
 𝐸 0 = 𝑉 0 = 𝐼 0 = 100, 𝑇 0 = 10, 𝑅 0 = 𝐷 0 =
0. The algorithm is the forward-backward scheme; starting 

with an initial guess for the optimal controls. The state 

variables are then solved forward in time using a Runge-

Kutta method of the fourth order. Then, those state variables 

and initial guess for the controls are used to solve the adjoint 

Equation backward in time with given final conditions (8), 

again employing a fourth order Runge-Kutta method. The 

controls are updated and used to solve the state and then the 

adjoint system. This iterative process terminates when 

current state, adjoint, and control values converge 

sufficiently [10][11]. Figure.1 shows the optimal control 

functions as a function of time computed for strategies using 

only single control functions respectively. 
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Figure.1  𝐴, 𝐵, 𝐶 & 𝐷 show the time dependent optimal 

control functions computed for all strategies using the 

controls  𝑢1, 𝑢2, 𝑢3, & 𝑢4  respectively.  

 

For the figures presented below, Figure 2. Show 

the optimal vaccinated, treatment and non-pharmaceutical 

intervention control laws. The controls are plotted as a 

function of time. The optimal control 𝑢1 is at its upper 

bound for 30 days and then is steadily decreasing its lower 

bound value; it means that the non-pharmaceutical 

intervention control safeguards the susceptible individuals 

from the possible infection. The optimal control 𝑢2 stays at 

its upper bound for a short time about four days, and then 

steadily decreases to its lower bound. While the optimal 

control  𝑢3 stays at its upper bound for 57 days & steadily 

decreases to the lower bound. The control  𝑢3 increases 

gradually at its upper bound from 0.3 and decreases to its 

lower bound over the rest of the simulated time. In fact, at 

the beginning of the simulated time the controls are staying 

at their upper bound in order to minimize as many as  

susceptible individuals that are at risk and also to prevent 

the increasing of the number of infected individuals. 

 
 

Figure. 2  Four optimal control functions implemented 

for all strategies as a function of time. 

 

In order to illustrate the overall picture of the epidemic, 

simulations for the infectious and treated are shown in 

Figure 3. The treatment control is more effective in reducing 

the number of infected individuals. The graph show the 

effectiveness of the treatment control in reducing the spread 

of disease. 

 
Figure.3  Infectious and treated individuals with and without 

control 

                          

 

The infectious individuals without control increases rapidly 

to 7, 0000 in first 30 days and it decreases to 5,000 with 

control. The treated individual also decreases with control. 

 

VI. Conclusion 

 

In our present study, an optimal control model of the 

transmission dynamics of the pandemic influenza is 

performed using four control strategies. Using Pontryagin’s 

Maximum Principle, the control system is analyzed to 

determine the necessary conditions for the existence of an 

optimal control. The control plots we developed indicate 

that the number of suceptibles and infectious individuals 

decreased in the optimality system. The simultaneous use of 

multiple control policies is more effective at reducing the 

number of secondary infections than the use of single- 

control policies. The results show the importance in 

minimizing the spread rate of infection at the initial time 

when medical control measures are not available or 

inadequate in preventing the spread of a disease.  
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